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ABSTRACT
Generating a novel and optimized molecule with desired chemical
properties is an essential part of the drug discovery process. Failure
to meet one of the required properties can frequently lead to fail-
ure in a clinical test which is costly. In addition, optimizing these
multiple properties is a challenging task because the optimization
of one property is prone to changing other properties. In this paper,
we pose this multi-property optimization problem as a sequence
translation process and propose a new optimized molecule genera-
tor model based on the Transformer with two constraint networks:
property prediction and similarity prediction. We further improve
the model by incorporating score predictions from these constraint
networks in a modified beam search algorithm. The experiments
demonstrate that our proposed model, Controlled Molecule Gener-
ator (CMG), outperforms state-of-the-art models by a significant
margin for optimizing multiple properties simultaneously.
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1 INTRODUCTION
Drug discovery is an expensive process. According to Dimasi et
al. [8], the estimated average cost to develop a new medicine and
gain FDA approval is $1.4 billion. Among this amount, 40% of it
is spent on the candidate compound generation step. In this step,
around 5,000 to 10,000 molecules are generated as candidates but
99.9% of them will be eventually discarded and only 0.1% of them
will be approved to the market. This inefficient nature of the candi-
date generation step serves as motivation to design an automated
molecule search method. However, finding target molecules with
the desired chemical properties is challenging because of two rea-
sons. First, an efficient search is not possible because the search
space is discrete to the input [22]. Second, the search space is too
large that it reaches up to 1060 [28]. As such, this task is currently
being tackled by pharmaceutical experts and takes years to design.
Therefore, this paper aims to accelerate the drug discovery process
by proposing a deep-learning (DL) model that accomplishes this
task effectively and quickly.

Recently, many methods of molecular design have been pro-
posed [3, 5, 10, 12, 14, 23, 27, 32, 33, 42]. Among them, Matched
Molecular Pair Analysis (MMPA) [13] and Variational Junction Tree
Encoder-Decoder (VJTNN) [21] formulated molecular property op-
timization as a problem of molecular paraphrase. Just as a Natural
Language Process (NLP) model produces paraphrased sentences,
when a molecule comes in as an input to these models, another
molecule with improved properties is generated by paraphrase. Al-
though MMPA was the first to try this approach, it is not effective
unless many rules are given to the model [21]. To mitigate this
problem, Jin et al. [21] proposed VJTNN, an end-to-end molecule
optimization model without the need for rules. By efficiently en-
coding and decoding a molecule with graphs and trees, it is the
current state-of-the-art (SOTA) model for optimizing a single prop-
erty (hereby referred to as a single-objective optimization task).
However, it cannot optimize multiple properties at the same time
(a multi-objective optimization task) because the model inherently
optimizes only one property. As noted by Shanmugasundaram et
al. [34] and Vogt et al. [39], the actual drug discovery process fre-
quently requires balancing of multiple properties.

With these motivations, we propose a new DL-based end-to-end
model that can optimize multiple properties in one model. By extend-
ing the preceding problem formulation, we consider the molecular
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optimization task as a sequence-based controlled paraphrase (or
translation) problem. The proposed model, controlled molecule
generator (CMG), learns how to translate the input molecules given
as sequences into new molecules as sequences that best reflect the
newly desired molecule properties. Our model extends the Trans-
former model [38] that showed its effectiveness in machine trans-
lation. CMG encodes raw sequences through a deep network and
decodes a new molecule sequence by referencing that encoding and
the desired properties. Since we represent the desired properties
as a vector, this model inherently can consider multiple objectives
simultaneously. Moreover, we present a novel loss function using
pre-trained constraint networks to minimize generating invalid
molecules. Lastly, we propose a novel beam search algorithm that
incorporates these constraint networks into the beam search algo-
rithm [26].

We evaluate CMG using two tasks (single-objective optimization
and multi-objective optimization) and two analysis studies (abla-
tion study case study)1. We compare our model with six existing
approaches including the current SOTA, VJTNN. CMG outperforms
all baseline models in both benchmarks. In addition, our model is
trained once and evaluated for all tasks, which shows practicality
and generality. The ablation study not only shows the effective-
ness of each sub-part, but demonstrates the superiority of CMG
itself without the sub-parts. Lastly, the case study demonstrates the
practicality of our method through the target affinity optimization
experiment using an actual experimental drug molecule.

Contribution: The contributions of this paper are summarized
as below;
• A new formulation of the multi-objective molecule optimiza-
tion task as a sequence-based controlled molecule translation
problem
• A new self-attention based molecule translation model that
can reflect the multiple desired properties through constraint
networks
• New loss functions to incorporate the pre-trained constraint
networks
• A novel beam search algorithm using the pre-trained con-
straint networks

2 RELATEDWORK
Molecule property optimization: Molecule property optimiza-
tion models can be divided into two types depending on the data
representation: sequence representations and graph representa-
tions. One of the earlier approaches using sequence representations
utilizes encoding rules [40], while the recent ones [12, 23, 33] are
based on DL methods that learn to reconstruct the input molecule
sequence. This is related to our work in terms of the input repre-
sentation, but they offer subpar performance when compared to
the SOTA models. Another group of research uses graph represen-
tations conveying structural information [4, 6, 19, 24, 31]. Among
them, VJTNN [21] and MMPA [6, 9, 13] are closely related to our
work because they formulate the molecule property optimization
task as a molecule translation problem. From the model perspective,
MMPA is a rule-based model and VJTNN is a supervised DL model.
Although our approach is also based on a DL method, there is a big
1Code and data are available at https://github.com/deargen/cmg

difference in practical use cases. A single VJTNN model is capable
of optimizing a single property, while CMG can optimize multiple
properties by using the controlled decoder. With these differences,
we formulate the molecule property optimization task as a “con-
trolled” molecule “sequence” translation problem. Other molecule
generation methods include Junction Tree Variatinal Auto Encoder
(JT-VAE) [20], Variational Sequence-to-Sequence (VSeq2Seq) [1, 12],
Graph Convolutional Policy Network (GCPN) [43], and Molecule
Deep Q-Networks (MolDQN) [44].
Natural Language Generation Model: Our model is inspired
by the recent success in molecule representation using the self-
attention technique [36]. By adopting the BERT [7] architecture to
represent molecule sequences, their model becomes the SOTA in
the drug-target interaction task. In terms of the model architecture,
our work is related to Transformer [38] because we extend it to be
applicable to the molecule optimization task. There is a controlled
text generation model [17] in NLP domain. It is related to ours
because they feed the desired text property as one of the inputs.
However, all of these methods are designed for NLP tasks, therefore,
they cannot be directly applied to molecule optimization tasks
for two reasons. Firstly, the similarity constraint of the molecule
optimization is an important feature, however, a typical NLP model
can’t reflect this. Secondly, NLP models take categorical properties
while ours is designed for numerical ones, which is more realistic
in a molecule optimization.
Transfer learning: DL-based transfer learning by pre-training
has been applied to many fields such as computer vision [11, 30],
NLP [16], speech recognition [18, 25], and health-care applica-
tions [35]. They are related to ours because we also pre-train the
constrained networks and transfer the weights to the main model.

3 CONTROLLED MOLECULE GENERATOR
3.1 Problem Definition
Given an input molecule X , its associated molecule property vector
pX , and the desired property vectorpY , the goal is to generate a new
molecule Y with the property pY with the similarity of (X ,Y ) ≥ δ .
Note that δ is a similarity threshold and the similarity measure
is Tanimoto molecular similarity over Morgan fingerprints [29].
Formally, for two Morgan fingerprints, FX and FY , where both
of them are binary vectors, the Tanimoto molecular similarity is
sim(FX , FY ) =

|FX∩FY |
|FX∪FY |

.

3.2 Model Overview
Our model extends the Transformer [38] to a molecular sequence
by incorporating molecule properties and additional regulariza-
tion networks. Inspired by the previous success in applying the
self-attention mechanism to represent a molecule sequence [36],
we treat each molecule just like a sequence. However, this NLP
technique cannot be directly applied, because the structure of the
molecular sequence differs from natural languages, where the hier-
archy is a letter-word-sentence. Not only that, there is no training
data available that is collected for the molecule translation task,
while there are ample datasets in the NLP domain. To fill these gaps,
we propose the controlled molecule generation model (Figure 1)
and present how we gather the training data for this network (Sec-
tion 4.1). We optimize CMG using three loss functions as briefly
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Figure 1: Controlled Molecule Generator (CMG) at training and prediction.

shown in Figure 1a. In addition, we propose two constraint net-
works (Section 3.4, Figure 3), the property prediction network and
the similarity prediction network to train the model more accu-
rately. Lastly, we also present how we modify the beam search
algorithm [26] to best exploit the existing auxiliary networks, as
briefly shown in Section 3.5 and Figure 1b.

3.3 Molecule Translation Network
We apply two modifications to the Transformer model [38]. First,
unlike Transformer which uses word embeddings, we use char-
acter embeddings because the molecule sequence is comprised of
characters representing atoms or structure indicators. To mark the
beginning and the end of a sequence, we add “[BEGIN]” token at
the first position of the sequence and “[END]” token at the last.
Another modification is that we add chemical property awareness
to the hidden layer of the Transformer model. We enrich token
vectors of the last encoder by concatenating property vectors to
each of the token vectors as shown in Figure 2. Formally, let zi
be the token vectors in the last encoder. Then, the new encoding
vector becomes z′i = (zi ,pX ,pY ) ∈ R

d+2k , where k represents the
number of properties. Although it might be seen as a simple method,
this empirically shows the best result among other types of con-
figurations, such as property embeddings, disentangled encodings
(property and non-property encodings), and concatenating prop-
erty differential information instead of providing two raw vectors.
The cost function of this network is the cross entropy between the
target (yi ) and predicted molecule (ŷi ). Therefore, it is formally
defined as,

LT (θT ;X ,pX ,pY ) = −
1
N

1
M

∑
n∈N

∑
j ∈M

∑
v ∈V

yv , j ,n · log(ŷv , j ,n )

where θT denotes all parameters of the Transformer and N ,M ,V
represent the number of training samples, the length of a sequence,
and the size of the vocabulary, respectively.

3.4 Constraint Networks
We hypothesize that the cost function of the Transformer network
(LT ) is not enough to teach the generating model, because the
error signals from this loss function can hardly capture the valu-
able information, such as if a predicted sequence pertains to the
desired property or if it satisfies the similarity constraint. With this
motivation, we add two constraint networks as follows.

3.4.1 Property Prediction Network. The property prediction net-
work (PropNet) takes the predicted molecule sequence (ŷi ) as an
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Figure 2: The molecule translation network.

input (on the top of Figure 3). The left-to-right LSTM [15] layer
and the right-to-left one encode input vectors (ŷi ) into hidden vec-
tors,

−→
h i ∈ R

d and
←−
h j ∈ R

d , respectively. Since the last vectors
for each direction summarize the sequence, they are concatenated
(hprop = (

−→
h M ,
←−
h M ) ∈ R

2d ) and fed into a dense network with
two hidden layers. With the predicted property, p̂Y and the desired
property (pY ) from the input, we can create a loss function, which
will enrich error signals by adding property awareness in predicting
a molecule. This is formally written as,

LP (θT ;X ,pX ,pY ) =
1
N

∑
n∈N
|pY n − ˆpY n |

2

We pre-train PropNet using molecules in the training set, and the
properties are calculated using a third-party library. Once pre-
trained, the parameters are transferred to the CMG network and
frozen when training the CMG.

3.4.2 Similarity Prediction Network. The input of the similarity
prediction network (SimNet) is composed of the predicted molecule
sequence (ŷi ) and the input molecule sequence (xi ) (on the bottom
of Figure 3). We posit that adding estimated similarity error signals
to the loss function could be useful for satisfying the similarity
requirement because this is relatively direct information in the
generation modeling. We employ one layer of BiLSTM for SimNet,
which is shared by two different inputs. Two inputs (ŷi and xi ) is
passed to the BiLSTM layer to produce each corresponding feature
vector, hŶM ∈ R

2d and hXM ∈ R
2d (M indicates the last token index).
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�!
h M

<latexit sha1_base64="9lV3OyDdZkRJkotVZ980GfvP7fU=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXJWkCrosunEjVLAPaEOYTCfN0MlMmJkoJWbhr7hxoYhbf8Odf+O0zUJbD1w4nHMv994TJIwq7TjfVmlpeWV1rbxe2djc2t6xd/faSqQSkxYWTMhugBRhlJOWppqRbiIJigNGOsHoauJ37olUVPA7PU6IF6MhpyHFSBvJtw/6wtiSDiONpBQPWZT72U3u21Wn5kwBF4lbkCoo0PTtr/5A4DQmXGOGlOq5TqK9DElNMSN5pZ8qkiA8QkPSM5SjmCgvm96fw2OjDGAopCmu4VT9PZGhWKlxHJjOGOlIzXsT8T+vl+rwwssoT1JNOJ4tClMGtYCTMOCASoI1GxuCsKTmVogjJBHWJrKKCcGdf3mRtOs197RWvz2rNi6LOMrgEByBE+CCc9AA16AJWgCDR/AMXsGb9WS9WO/Wx6y1ZBUz++APrM8fUo6W8A==</latexit>

DENSE

p̂1
<latexit sha1_base64="LF/VXZBbuNV+ist+T36IQafAd1E=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ie0oWy2m3bpbhJ2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7GtzO//cS1EXH0gJOE+4oOIxEKRtFKj70RxSzpe9N+ueJW3TnIKvFyUoEcjX75qzeIWap4hExSY7qem6CfUY2CST4t9VLDE8rGdMi7lkZUceNn84On5MwqAxLG2laEZK7+nsioMmaiAtupKI7MsjcT//O6KYbXfiaiJEUescWiMJUEYzL7ngyE5gzlxBLKtLC3EjaimjK0GZVsCN7yy6ukVat6F9Xa/WWlfpPHUYQTOIVz8OAK6nAHDWgCAwXP8ApvjnZenHfnY9FacPKZY/gD5/MHz4qQaQ==</latexit>

p̂2
<latexit sha1_base64="abYNL6wGZGtcTZW/ttTL983pfM4=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ie0oWy2m3bpbhJ2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7GtzO//cS1EXH0gJOE+4oOIxEKRtFKj70RxSzp16b9csWtunOQVeLlpAI5Gv3yV28Qs1TxCJmkxnQ9N0E/oxoFk3xa6qWGJ5SN6ZB3LY2o4sbP5gdPyZlVBiSMta0IyVz9PZFRZcxEBbZTURyZZW8m/ud1Uwyv/UxESYo8YotFYSoJxmT2PRkIzRnKiSWUaWFvJWxENWVoMyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAEBgqe4RXeHO28OO/Ox6K14OQzx/AHzucP0Q+Qag==</latexit>

p̂3
<latexit sha1_base64="+Makk8qOGKuBdg3X8ZBM8sSg8Vg=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BIvgqSStoMeiF48VbKu0oWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4W19Y3NreJ2aWd3b/+gfHjUNnGqKWvRWMT6ISSGCa5YCzkK9pBoRmQoWCcc38z8zhPThsfqHicJCyQZKh5xStBKj70RwSzp16f9csWrenO4q8TPSQVyNPvlr94gpqlkCqkgxnR9L8EgIxo5FWxa6qWGJYSOyZB1LVVEMhNk84On7plVBm4Ua1sK3bn6eyIj0piJDG2nJDgyy95M/M/rphhdBRlXSYpM0cWiKBUuxu7se3fANaMoJpYQqrm91aUjoglFm1HJhuAvv7xK2rWqX6/W7i4qjes8jiKcwCmcgw+X0IBbaEILKEh4hld4c7Tz4rw7H4vWgpPPHMMfOJ8/0pSQaw==</latexit>

…

…

…

DENSE

…

Shared
biLSTM Layer

ŷ1
<latexit sha1_base64="XhvwZaMNNNWCK0LlEg8YpykU6TU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ie0oWy223bpbhJ2J0II/RVePCji1Z/jzX/jts1BWx8MPN6bYWZeEEth0HW/ncLa+sbmVnG7tLO7t39QPjxqmSjRjDdZJCPdCajhUoS8iQIl78SaUxVI3g4mtzO//cS1EVH4gGnMfUVHoRgKRtFKj70xxSzte9N+ueJW3TnIKvFyUoEcjX75qzeIWKJ4iExSY7qeG6OfUY2CST4t9RLDY8omdMS7loZUceNn84On5MwqAzKMtK0QyVz9PZFRZUyqAtupKI7NsjcT//O6CQ6v/UyEcYI8ZItFw0QSjMjsezIQmjOUqSWUaWFvJWxMNWVoMyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAEBgqe4RXeHO28OO/Ox6K14OQzx/AHzucP3UmQcg==</latexit>

ŷ2
<latexit sha1_base64="zVpXf0hYogVque5JhuxmdJg66UE=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ie0oWy2m3bpbhJ2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7GtzO//cS1EXH0gJOE+4oOIxEKRtFKj70RxWzSr0375Ypbdecgq8TLSQVyNPrlr94gZqniETJJjel6boJ+RjUKJvm01EsNTygb0yHvWhpRxY2fzQ+ekjOrDEgYa1sRkrn6eyKjypiJCmynojgyy95M/M/rphhe+5mIkhR5xBaLwlQSjMnsezIQmjOUE0so08LeStiIasrQZlSyIXjLL6+SVq3qXVRr95eV+k0eRxFO4BTOwYMrqMMdNKAJDBQ8wyu8Odp5cd6dj0VrwclnjuEPnM8f3s6Qcw==</latexit>

ˆyM
<latexit sha1_base64="KJMM8+rshKNYjHIK5sHcxKGs5Xw=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+kDWWz3bRLN5uwOxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDP1W09cGxGrBxwn3I/oQIlQMIpWeuwOKWbj3t2kVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezgCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhMvyd9oTlDObaEMi3srYQNqaYMbUZFG4K3+PIyaVYr3nmlen9Rrl3ncRTgGE7gDDy4hBrcQh0awCCCZ3iFN0c7L8678zFvXXHymSP4A+fzBwfkkI4=</latexit>

…

Shared
biLSTM Layer

x2
<latexit sha1_base64="vdTCQWpAcdEoAqjXndSIH2U27gw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMOgo2l</latexit>

x1
<latexit sha1_base64="MWSDWkw1NdOauHNwPQkLknLX4o4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEM/o2k</latexit>

xM
<latexit sha1_base64="fZnybbYySksWSrntsOUwcLWLhYs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL16EiOYByRJmJ5NkyOzsMtMrhiWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0fXUbz5ybUSkHnAccz+kAyX6glG00v1T97ZbLLlldwayTLyMlCBDrVv86vQiloRcIZPUmLbnxuinVKNgkk8KncTwmLIRHfC2pYqG3Pjp7NQJObFKj/QjbUshmam/J1IaGjMOA9sZUhyaRW8q/ue1E+xf+qlQcYJcsfmifiIJRmT6N+kJzRnKsSWUaWFvJWxINWVo0ynYELzFl5dJo1L2zsqVu/NS9SqLIw9HcAyn4MEFVOEGalAHBgN4hld4c6Tz4rw7H/PWnJPNHMIfOJ8/N26NwA==</latexit>

�!
h Ŷ

M
<latexit sha1_base64="nB2cjazuCbs5Gj+5QMshNemwNWs=">AAACCXicbVDLSsNAFJ34rPUVdelmsAiuSlIFXRbduBEq2Ie0MUym02boJBNmbpQSsnXjr7hxoYhb/8Cdf+P0sdDWAxcO59zLvfcEieAaHOfbWlhcWl5ZLawV1zc2t7btnd2GlqmirE6lkKoVEM0Ej1kdOAjWShQjUSBYMxhcjPzmPVOay/gGhgnzItKPeY9TAkbybdyRxla8HwJRSj5kYe5nV/ld1gkJZLd57tslp+yMgeeJOyUlNEXNt786XUnTiMVABdG67ToJeBlRwKlgebGTapYQOiB91jY0JhHTXjb+JMeHRuninlSmYsBj9fdERiKth1FgOiMCoZ71RuJ/XjuF3pmX8ThJgcV0sqiXCgwSj2LBXa4YBTE0hFDFza2YhkQRCia8ognBnX15njQqZfe4XLk+KVXPp3EU0D46QEfIRaeoii5RDdURRY/oGb2iN+vJerHerY9J64I1ndlDf2B9/gCog5uU</latexit>

 �
h Ŷ

M
<latexit sha1_base64="mc99CD5s3TAIQON16FM502pdWew=">AAACCHicbVDLSsNAFJ3UV62vqEsXBovgqiRV0GXRjRuhgn1IU8NkOmmGTjJh5kYpIUs3/oobF4q49RPc+TdOHwttPXDhcM693HuPn3CmwLa/jcLC4tLySnG1tLa+sbllbu80lUgloQ0iuJBtHyvKWUwbwIDTdiIpjnxOW/7gYuS37qlUTMQ3MExoN8L9mAWMYNCSZ+67QtucBoClFA9ZmHvZVX6XuSGG7DbPPbNsV+wxrHniTEkZTVH3zC+3J0ga0RgIx0p1HDuBboYlMMJpXnJTRRNMBrhPO5rGOKKqm40fya1DrfSsQEhdMVhj9fdEhiOlhpGvOyMMoZr1RuJ/XieF4KybsThJgcZksihIuQXCGqVi9ZikBPhQE0wk07daJMQSE9DZlXQIzuzL86RZrTjHler1Sbl2Po2jiPbQATpCDjpFNXSJ6qiBCHpEz+gVvRlPxovxbnxMWgvGdGYX/YHx+QPHKpsX</latexit>

 �
h X

M
<latexit sha1_base64="hfzWeNdfJzm9VYyYSsa9Vyhfg2g=">AAACAnicbVBNS8NAEN34WetX1JN4CRbBU0mqoMeiFy9CBfsBbSyb7aRdutkNuxulhODFv+LFgyJe/RXe/Ddu2xy09cHA470ZZuYFMaNKu+63tbC4tLyyWlgrrm9sbm3bO7sNJRJJoE4EE7IVYAWMcqhrqhm0Ygk4Chg0g+Hl2G/eg1RU8Fs9isGPcJ/TkBKsjdS19zvC2AxCjaUUD+kg66bX2V3ayrp2yS27EzjzxMtJCeWode2vTk+QJAKuCcNKtT031n6KpaaEQVbsJApiTIa4D21DOY5A+enkhcw5MkrPCYU0xbUzUX9PpDhSahQFpjPCeqBmvbH4n9dOdHjup5THiQZOpovChDlaOOM8nB6VQDQbGYKJpOZWhwywxESb1IomBG/25XnSqJS9k3Ll5rRUvcjjKKADdIiOkYfOUBVdoRqqI4Ie0TN6RW/Wk/VivVsf09YFK5/ZQ39gff4AvJSYSQ==</latexit>

�!
h X

M
<latexit sha1_base64="uLessZoiCtIHlUtCJP0DTzlAtZI=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4KkkVdFl040aoYB/QxjCZTpqhk5kwM1FKCLjxV9y4UMStP+HOv3HaZqGtBy4czrmXe+8JEkaVdpxva2FxaXlltbRWXt/Y3Nq2d3ZbSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6MBpyHFSBvJt/d7wtiSDiKNpBQPWZT72XV+l3Vy3644VWcCOE/cglRAgYZvf/X6Aqcx4RozpFTXdRLtZUhqihnJy71UkQThIRqQrqEcxUR52eSHHB4ZpQ9DIU1xDSfq74kMxUqN4sB0xkhHatYbi/953VSH515GeZJqwvF0UZgyqAUcBwL7VBKs2cgQhCU1t0IcIYmwNrGVTQju7MvzpFWruifV2s1ppX5RxFECB+AQHAMXnIE6uAIN0AQYPIJn8ArerCfrxXq3PqatC1Yxswf+wPr8AZsvmMY=</latexit>

�!
h X

M
<latexit sha1_base64="uLessZoiCtIHlUtCJP0DTzlAtZI=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4KkkVdFl040aoYB/QxjCZTpqhk5kwM1FKCLjxV9y4UMStP+HOv3HaZqGtBy4czrmXe+8JEkaVdpxva2FxaXlltbRWXt/Y3Nq2d3ZbSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6MBpyHFSBvJt/d7wtiSDiKNpBQPWZT72XV+l3Vy3644VWcCOE/cglRAgYZvf/X6Aqcx4RozpFTXdRLtZUhqihnJy71UkQThIRqQrqEcxUR52eSHHB4ZpQ9DIU1xDSfq74kMxUqN4sB0xkhHatYbi/953VSH515GeZJqwvF0UZgyqAUcBwL7VBKs2cgQhCU1t0IcIYmwNrGVTQju7MvzpFWruifV2s1ppX5RxFECB+AQHAMXnIE6uAIN0AQYPIJn8ArerCfrxXq3PqatC1Yxswf+wPr8AZsvmMY=</latexit>

 �
h X

M
<latexit sha1_base64="hfzWeNdfJzm9VYyYSsa9Vyhfg2g=">AAACAnicbVBNS8NAEN34WetX1JN4CRbBU0mqoMeiFy9CBfsBbSyb7aRdutkNuxulhODFv+LFgyJe/RXe/Ddu2xy09cHA470ZZuYFMaNKu+63tbC4tLyyWlgrrm9sbm3bO7sNJRJJoE4EE7IVYAWMcqhrqhm0Ygk4Chg0g+Hl2G/eg1RU8Fs9isGPcJ/TkBKsjdS19zvC2AxCjaUUD+kg66bX2V3ayrp2yS27EzjzxMtJCeWode2vTk+QJAKuCcNKtT031n6KpaaEQVbsJApiTIa4D21DOY5A+enkhcw5MkrPCYU0xbUzUX9PpDhSahQFpjPCeqBmvbH4n9dOdHjup5THiQZOpovChDlaOOM8nB6VQDQbGYKJpOZWhwywxESb1IomBG/25XnSqJS9k3Ll5rRUvcjjKKADdIiOkYfOUBVdoRqqI4Ie0TN6RW/Wk/VivVsf09YFK5/ZQ39gff4AvJSYSQ==</latexit>

�!
h Ŷ

M
<latexit sha1_base64="nB2cjazuCbs5Gj+5QMshNemwNWs=">AAACCXicbVDLSsNAFJ34rPUVdelmsAiuSlIFXRbduBEq2Ie0MUym02boJBNmbpQSsnXjr7hxoYhb/8Cdf+P0sdDWAxcO59zLvfcEieAaHOfbWlhcWl5ZLawV1zc2t7btnd2GlqmirE6lkKoVEM0Ej1kdOAjWShQjUSBYMxhcjPzmPVOay/gGhgnzItKPeY9TAkbybdyRxla8HwJRSj5kYe5nV/ld1gkJZLd57tslp+yMgeeJOyUlNEXNt786XUnTiMVABdG67ToJeBlRwKlgebGTapYQOiB91jY0JhHTXjb+JMeHRuninlSmYsBj9fdERiKth1FgOiMCoZ71RuJ/XjuF3pmX8ThJgcV0sqiXCgwSj2LBXa4YBTE0hFDFza2YhkQRCia8ognBnX15njQqZfe4XLk+KVXPp3EU0D46QEfIRaeoii5RDdURRY/oGb2iN+vJerHerY9J64I1ndlDf2B9/gCog5uU</latexit>

 �
h Ŷ

M
<latexit sha1_base64="mc99CD5s3TAIQON16FM502pdWew=">AAACCHicbVDLSsNAFJ3UV62vqEsXBovgqiRV0GXRjRuhgn1IU8NkOmmGTjJh5kYpIUs3/oobF4q49RPc+TdOHwttPXDhcM693HuPn3CmwLa/jcLC4tLySnG1tLa+sbllbu80lUgloQ0iuJBtHyvKWUwbwIDTdiIpjnxOW/7gYuS37qlUTMQ3MExoN8L9mAWMYNCSZ+67QtucBoClFA9ZmHvZVX6XuSGG7DbPPbNsV+wxrHniTEkZTVH3zC+3J0ga0RgIx0p1HDuBboYlMMJpXnJTRRNMBrhPO5rGOKKqm40fya1DrfSsQEhdMVhj9fdEhiOlhpGvOyMMoZr1RuJ/XieF4KybsThJgcZksihIuQXCGqVi9ZikBPhQE0wk07daJMQSE9DZlXQIzuzL86RZrTjHler1Sbl2Po2jiPbQATpCDjpFNXSJ6qiBCHpEz+gVvRlPxovxbnxMWgvGdGYX/YHx+QPHKpsX</latexit>

ŝ
<latexit sha1_base64="zft0RJb7mD3s88vhv61j863SQxs=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKnf6YYmZmg3LFrboLkHXi5aQCOZqD8ld/GLM04gqZpMb0PDdBP6MaBZN8VuqnhieUTeiI9yxVNOLGzxbnzsiFVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxvPEzoZIUuWLLRWEqCcZk/jsZCs0ZyqkllGlhbyVsTDVlaBMq2RC81ZfXSbtW9a6qtYd6pXGbx1GEMziHS/DgGhpwD01oAYMJPMMrvDmJ8+K8Ox/L1oKTz5zCHzifP6nxj8g=</latexit>

(a) Property Prediction Network. Gray indicates unused 
vectors.

(b) Similarity prediction network. The biLSTM layer is 
simplified because the details are described in (a). One 
biLSTM layer is being shared by two input sequences.  

biLSTM biLSTM biLSTM

Figure 3: Two Constraint Networks.

We concatenate these two feature vectors as (hŶM ,h
X
M ) ∈ R

4d , so
that the next two dense networks can capture the similarity between
the two. After applying two-layered dense network, we get the
binary prediction (ŝn ) whether the two input molecules are similar
or not according to the threshold δ . With this prediction (ŝn ) and
the label (sn ), we can create the last loss function, formally written
as

LS (θT ;X , pX , pY ) =
1
N

∑
n∈N

sn log ŝn + (1 − sn ) log (1 − ŝn )

We transfer the pre-trained SimNet weights into the CMG model
and freeze the SimNet weights when training the CMG network.

3.4.3 CMG Loss Function. By combining all cost functions
(LT ,LP ,LS ), we can obtain the CMG loss function as

LCMG = LT + λpLP + λsLS

where λp and λs are weight parameters.

3.5 Modified Beam Search with Constraint
Networks

When generating a sequence from CMG at testing, there is no
gold output sequence that it can reference. Therefore we need to
sequentially generate tokens until we encounter the "[END]" token,
like other sequence-based algorithms. At this process, a typical way

Algorithm 1 Modified Beam Search
1: Input: Candidate molecules: C1,C2, · · · ,Cb ,

Corresponding beam scores: s1, s2, · · · , sb
Input molecule: X
Desired property vector: pY

2: for i = 1 to b do
3: p̂i ← PropNet(Ci )
4: pd ← |pY − p̂i |
5: spn ← reduce_mean(1 − pd )
6: ssn ← SimNet(X ,Ci )
7: si ← si + (spn + ssn )
8: end for
9: best_index← argmax si
10: Output: Cbest_index

is the beam search, where the model maintains top b number of
best candidate sequences when predicting each token. When all
candidate sequences are complete and ready, the model outputs the
best candidate in terms of a beam score, a cumulative log-likelihood
score for a corresponding candidate. However, the standard beam
search does not account for the multi-objective nature of our task.
For example, there is a possibility that low ranked molecules could
be closer to the desired properties than the top molecule selected
by the beam search. Therefore, we propose a modified beam search
algorithm (Algorithm 1) using our constraint networks. For the
property evaluation, we first get the predicted property of each
candidate and get the absolute difference from the desired property
(Line 3-4 in Algorithm 1). Since this difference is desired to be small,
we calculate the property evaluation score (spn ) by subtracting
them from one (Line 5 in Algorithm 1). The property could have
multiple values, therefore, we take an average of all elements of
this difference vector. For the similarity evaluation, we get the
predicted similarity between the input X and each candidate Ci
(Line 6 in Algorithm 1). Since we expect a candidate should be
similar (label 1) to the input, we regard the predicted similarity as
the raw score from SimNet. By adding these two predicted scores
to the original beam scores, we obtain the modified beam scores
(Line 7 in Algorithm 1). With this new score, we can select the best
candidate (Line 9-10 in Algorithm 1).

3.6 Diversifying the Output
Unlike other variational models (VSeq2Seq and VJTNN), CMG
encodes a fixed vector that is able to generate a single output
for one input. In order to diversify the output for a fixed input,
we re-parameterize the desired vector, (p1,p2,p3), as random vari-
able by adding a Gaussian noise with a user-specified variance,
p̃k ∼ N (pk ,σk ). For example, if the desired property vector is
(p1,p2,p3), we feed (p1 + α,p2 + β,p3 + γ ), where α, β and γ are
samples drawn from N (0,σ1), N (0,σ2), and N (0,σ3).

4 EXPERIMENTS
We compare CMGwith state-of-the-artmolecule optimizationmeth-
ods in the following tasks. Single Objective Optimization (SOO):
This task is to optimize an input molecule to have a better property
while preserving a certain level of similarity between the input
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molecule and the optimized one. Since developing a new drug
usually starts with an existing molecule [2], this task serves as a
good benchmark. Multi-Objective Optimization (MOO): This
task reflects a more practical scenario in drug discovery, where
modifying an existing drug involves optimizing multiple proper-
ties simultaneously, such as similarity, lipophilicity scores, drug
likeness scores, and target affinity scores. Since improving one prop-
erty might often result in sacrificing other properties, this task is
harder than a single-objective optimization task. To present multi-
faceted aspects of CMG, we additionally perform the following
experiments.Ablation Study: For ablation study, we report the va-
lidity of the constraint networks both in training and testing phases.
Case Study: To evaluate the effectiveness of CMG, we present the
result of an actual drug optimization task with an existing molecule
in an experimental phase. More precise information regarding the
reproducibility can be found in the supplementary material.

4.1 Datasets
Since CMG is based on sequence translation, we need to appropri-
ately curate the dataset.

Training Set for CMG: We use the ZINC dataset [37] (249,455
molecules) and the DRD2 related molecule dataset (DRD2D) [27]
(25,695 molecules), which result in 260,939 molecules for our exper-
iments. This is the same set of molecules on which Jin et al. [21]
used to evaluate their model (VJTNN). From these 260k molecules,
we exclude molecules that appear in the development and the test
set of VJTNN, resulted in 257,565 molecules. With these molecules,
we construct training datasets by selecting molecule pairs (X ,Y )
with the similarity is greater than or equal to 0.4, following the
same procedure in [6, 21]. Jin et al. [21] used the small portion of
these pairs by excluding all property-decreased molecule pairs. The
main difference from their curation processes is that we don’t have
to exclude many property-decreased molecule pairs because our
model can extract useful information even from them. By doing
this, we provide a more ample dataset to a deep model, so that
it could be helpful in finding more useful patterns. As a result,
the number of pairs in training data is significantly bigger than
theirs. Among all possible pairs (257K × 257K = 67B), we select
10,827,615 pairs that satisfies similarity condition (≥ 0.4). With the
same similarity condition, Jin et al. [21] gathered less than 100K due
to additional constraints of training sets, which is only property
increased molecule pairs can be used as training data. As previous
works [21, 23] did, we pre-calculate the three chemical properties
of all molecules (pX and pY ) in the training set: Penalized logP
(PlogP) [23] is a measure of lipophilicity of a compound, specif-
ically, the octanol/water partition coefficient (logP) penalized by
the ring size and synthetic accessibility. Drug likeness (QED) is
the quantitative estimate of drug-likeness proposed by Bickerton et
al. [2] and Dopamine Receptor (DRD2) is a measure of molecule
activity against a biological target, the dopamine type 2 receptor.

Training Set for PropNet: Among 260,939 molecules, we ex-
cluded all molecules in the test sets of the two tasks; single-objective
optimization, multi-objective optimization. The number of these re-
mained molecules is 257,565. We construct the dataset for PropNet
by arranging all molecules as inputs and the corresponding three

properties as outputs. We randomly split this into the training and
validation sets with a ratio of 8:2.

Training Set for SimNet: We use a subset of all 10,827,615
pairs in the CMG training set due to the simpler network configura-
tion of SimNet. When sub-sampling pairs, we tried to preserve the
proportion of the similarity in the CMG dataset to best preserve
the original data distribution. The reason behind this effort is that
preserving the similarity distribution could possibly contribute to
the SimNet accuracy although SimNet only uses binary labels. In
addition, we try to preserve the similar/not-similar ratio to be about
to the same. By sampling about 10% of data, we gathered 997,773
number of pairs and the ratio of the positive samples is 49.45%. We
randomly split this into the training and validation set with a ratio
of 8:2.

4.2 Pre-Training of Constraint Networks
We pre-train the two constraint networks using the training sets
described in Section 4.1. We choose the pre-trained PropNet that
recorded the mean square error of 0.0855 and the the pre-trained
SimNet of 0.9759 accuracy through the best model evaluated on
each corresponding development set. The pre-trained weights of
the two networks are transferred to the corresponding part in the
CMG model and frozen when training CMG and predicting a new
molecule using it. The details of the configuration is described in
the supplement material.

4.3 Single Objective Optimization
The first task is the single objective optimization task proposed
by Jin et al. [20]. The goal is to generate a new molecule with
an improved single property score under the similarity constraint
(δ = 0.4). We used the same development and test sets provided by
Jin et al. [20]. Our model is trained once and evaluated for all tasks
(SOO, MOO and the case study).

Baselines:We compare CMGwith the following baselines;MMPA,
JT-VAE, GCPN, VSeq2Seq, MolDQN, and VJTNN introduced in Sec-
tion 2. Since Jin et al. [21] ran and reported almost all of the baseline
methods on the single property optimization task (PlogP improve-
ment task) with the same test sets, we cite their experiment results.
For MolDQN, which is published after VJTNN, we referenced the
scores from MolDQN paper [44].

Metrics: Since the task is to generate a molecule with an im-
proved PlogP value, we measure an average of raw increments and
its standard deviation among valid molecules with the similarity
constraint met. Following the VJTNN procedure [21], one best mol-
ecule is selected among 20 generated molecules. We also measure
the diversity defined by Jin et al. [21]. Although this diversity mea-
sure has been used by previous researches, it is limited in that it
encourages the outputs to have low similarity around the threshold.
However, this could be beneficial in a practical situation where the
model needs to generate various molecules around the similarity
threshold.

Result: After we train the model we generate new molecules
by feeding input molecules and desired chemical properties to the
trained model. As discussed in Section 3.6, we add offsets to desired
properties so that the output can be diversified. Since the number
of generated samples for each input is set to 20, we use the desired

150



ACM CHIL ’21, April 8–10, 2021, Virtual Event, USA Bonggun Shin, Sungsoo Park, JinYeong Bak, and Joyce C. Ho

Single Obj.Opt. Multi Obj.Opt.

Method Improvement Diversity All Samples Sub Samples
MMPA 3.29 ± 1.12 0.496 - -
JT-VAE 1.03 ± 1.39 - - -
GCPN 2.49 ± 1.30 - - -
VSeq2Seq 3.37 ± 1.75 0.471 - -
MolDQN 3.37 ± 1.62 - - 0.00%
VJTNN 3.55 ± 1.67 0.480 3.56% 4.00%
CMG 3.92 ± 1.88 0.545 6.98% 6.00%

Table 1: Single and multi objective optimization perfor-
mance comparison on the penalized logP task. For the single
one, MolDQN results are from [44], and the scores of other
baselines are from [21]. The reported scores of the multi ob-
jective optimization task is a success rate. CMGoutperforms
the baselines in both of the two tasks.

property vector of {XP log P , 0.0, 0.0} with a total of 20 combina-
tions of (α ,β ,γ ) that are sampled from the user-defined distributions.
We select the best model using the development set, and the test
set performance of that model is reported in the left part of Table 1.
In the PlogP optimization task, CMG outperforms all baselines in-
cluding the current SOTA, VJTNN, in terms of both the average
improvement and the diversity by a large margin. Considering the
two recently proposed methods (MolDQN and VJTNN) are com-
peting in 0.18 difference, CMG surpasses the current SOTA by 0.37
improvement. The same trend can be found in the diversity compar-
ison. For QED and DRD2 cases, however, CMG underperforms the
others (the scores are in the supplemental material). The primary
reason is that the CMG model is trained once for the MOO task.
This model is then re-used and evaluated on the SOO tasks. More
specifically, the proportions of improved QED and DRD2 pairs in
the training set are just 5.9% and 0.08%, respectively. Therefore,
when optimizing solely for QED or DRD2, CMG could not fully ex-
tract the useful information from the training set. Since our model
is trained once for all tasks (SOO, MOO, and the case study), this
small portion of information can negatively impact certain single
property optimizations, such as QED and DRD2. However, consid-
ering SOO is less practical in drug discovery, the focus should be
on the MOO results.

4.4 Multi Objective Optimization
We set up a new benchmark, multi-objective optimization (MOO)
because the actual drug discovery process frequently requires bal-
ancing of multiple compound properties [34, 39]. In this task, we
jointly optimize three chemical properties for a given molecule. We
set up the success criteria of the generated molecules in the MOO
task as follows:

• sim(X ,Y ) ≥ 0.4
• PlogP improvement is at least 1.0
• QED value is at least 0.9
• DRD2 value is over 0.5

We created the above four conditions by combining the existing
single optimization benchmarks from VJTNN [21] as one simulta-
neous condition2.

To create the development set of this task, we merge all three
different development sets provided by VJTNN, consisting of 1,038
molecules. Among those molecules, we exclude any molecules that
already satisfy the above criteria. Then, the final development set
contains 985 molecules. We perform the same procedure for the
test set, which reduces the number of molecules to 2,365.

Baselines: For this task, we include the top two baselines (MolDQN
and VJTNN) from the SOO task. While MolDQN can perform the
MOO task by simply modifying the reward function, VJTNN can’t
perform as it is because it is designed for a single property opti-
mization. Here are how we prepare those baselines for the MOO
task.
• MolDQN: The reward function ofMolDQN for this task is defined
as

r =
1
8
1(sim(X ,Y ) ≥ 0.4)

+
1
8
1(P log P(Y ) − P log P(X ) ≥ 1.0)

+
1
8
1(QED ≥ 0.9) +

1
8
1(DRD2 > 0.5)

+
1
8
sim(X ,Y ) +

1
8
P log P(Y ) +

1
8
QED(Y ) +

1
8
DRD2(Y )

The first four terms represent the exact goal of the task, and the
last four terms provide continuous information about the goals.
Unlike VJTNN and CMG that require mere evaluation of the
trained models, MolDQN should be re-trained from the beginning
for each test sample, which requires significant time. Therefore,
evaluating MolDQN for all 2,365 samples requires 2,365 times
of training that is estimated as more than three months with a
96-CPUs server.
Therefore, we sub-sample the test set (n = 50) while preserving
the original distribution3 and we use it for the proxy evaluation
of MolDQN. For each input, we generate 60 samples after training
the model (with exploration rate set to zero) and report success if
at least one of them satisfies the success criteria defined above.
• VJTNN: We sequentially optimize an input molecule using three
trained models from VJTNN (models for PlogP, QED, and DRD2).
Firstly, the PlogP model generates 20 molecules for an input
molecule. We select the most similar molecules that satisfy PlogP
criteria. Then, we repeat this process for QED and DRD2 models
using the output of a preceding model as an input. Finally, we
report success if any output of DRD2 model satisfies the success
criteria.
Result: We only compare VJTNN for all samples due to the in-

feasible running time of MolDQN as mentioned above. As the right
part of Table 1 shows, CMG is almost two times more successful in
this task. The sub-sample experiment shows similar performance
for VJTNN and ours, while MolDQN is not able to generate any
successful samples.

2For the PlogP improvement, we set a hard number of 1.0 instead of measuring the
magnitude of improvements to transform the criteria into a binary condition.
3When sub-sampling, we tried to preserve the proportion of the PlogP values to best
get unbiased samples.
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Method Success Rate ±

VJTNN 3.56 -3.42

CMG

PNet SNet MBS
2� 2� 2� 6.98 -
2� 2� □ 6.72 -0.26
□ 2� 2� 6.77 -0.21
2� □ 2� 6.26 -0.72
□ □ 2� 5.33 -1.65
□ □ □ 5.33 -1.65

Table 2: Ablation study on the Multi Objective Optimization
task. MBS is modified beam search, PNet is PropNet, and
SNet is SimNet. It’s worthy to note that CMG without any
constraints networks and themodified beam search still out-
performs VJTNN in the MOO task.

4.5 Ablation Study
To illustrate the effect of the two constraint networks and the mod-
ified beam search, we present the result of the ablation study in
Table 2. We use the MOO task for this comparison, and the result
of VJTNN is also included for the reference. It’s worthwhile to
note that CMG without any constraint networks and the modified
beam search still outperforms VJTNN by 1.77% point. The com-
ponent with the biggest contribution is SimNet that improves the
performance by 0.72% point from the model without it. Another
interesting thing is the success rates of the last two models in Ta-
ble 2 are identical. The possible explanation is that if a model is
trained without any constraint networks, the neurons generating
candidate molecules could not properly convey any information
about similarity and properties that can be exploited in the modified
beam search.

4.6 Case Study
The purpose of this case study is to test how well a model can
maintain other properties unchanged when optimizing one prop-
erty. Therefore, we try to improve only the Dopamine D2 recep-
tor (DRD2) score, and keep other properties unchanged as much
as possible. We performed this case study using an actual drug
that is under the experimental stage targeting DRD2. From Drug-
bank [41], we first enlist all DRD2 targeting drugs that are in
either experimental or investigational stages. Among these 28
drugs, we select the lowest DRD2 scored drug, named Aniracetam
(COC1=CC=C(C=C1)C(=O)N1CCCC1=O) for this study. The goal
is to improve DRD2 score with minimum perturbation of other
properties. This can be seen as SOO, however it’s a MOO, because
DRD2 should be increased while others need to be unchanged.

Baselines: Since one VJTNN model optimizes one property, we
just run the DRD2 VJTNNmodel trained by Jin et al. [21] by feeding
Aniracetam. For MolDQN, the reward function becomes simpler as
r = 1

21(sim(X ,Y ) ≥ 0.4) + 1
2DRD2(Y ).

Result: In Figure 4, we compare the molecules generated by
MolDQN (C=C(c1ccc(OC) cc1)N1CCCC1) and ours (COc1ccccc1N1
CCN(C2CC(C(=O)N3CCCC3=O)=C2c2ccccc2)CC1), excluding the

By MolDQN 
PlogP=1.77 (+0.73)

QED=0.75 (+0.04)


DRD2=0.03 (+0.03)

similarity=0.40

similarity=0.44Aniracetam 
PlogP=1.04

QED=0.71


DRD2=0.0000023

By CMG 
PlogP=0.69 (-0.35)

QED=0.68 (-0.03)


DRD2=0.77 (+0.77)

Figure 4: A case study: The molecule produced by CMG has
a better DRD2 score while keeping other properties less
perturbed. On the other hand, the molecule produced by
MolDQN is less improved in terms of DRD2 score, and more
perturbed in terms of the other two.We exclude the result of
VJTNN because it didn’t generate any valid (sim(X ,Y ) ≥ 0.4)
molecules.

result of VJTNN, because VJTNN didn’t generate valid (sim(X ,Y ) ≥
0.4) molecules. In terms of the predicted DRD2 scores, our molecule
reached 0.77 whereas MolDQN’s molecule only recorded 0.03. For
the other two properties which should be unchanged, our molecule
seems to be stable with changes in PlogP by -0.35 and QED by -0.03
when compared with the MolDQN molecule that showed larger
changes especially in PlogP. Although one case study cannot prove
the general superiority of CMG, it consistently outperforms other
baselines in all benchmarks (SOO, MOO, and the case study).

5 CONCLUSION
This paper proposes a new controlled molecule generation model
using the self-attention based molecule translation model and two
constraint networks. We pre-train and transfer the weights of the
two constraint networks so that they can effectively regulate the
output molecules. Not only that, we present a new beam search
algorithm using these networks. Experimental results show that
CMG outperforms all other baseline approaches in both single-
objective optimization and multi-objective optimization by a large
margin. Moreover, the case study using an actual experimental drug
shows the practicality of CMG. In the ablation study, we present
how each sub-unit contributes to model performance. It’s worth
to note that our model is trained once and evaluated for all tasks
(SOO, MOO and the case study), which shows practicality and
generalizability.
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