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ABSTRACT
Electronic health records (EHR) are often generated and collected

across a large number of patients featuring distinctive medical

conditions and clinical progress over a long period of time, which

results in unaligned records along the time dimension. EHR is also

prone to missing and erroneous data due to various practical rea-

sons. Recently, PARAFAC2 has been re-popularized for successfully

extracting meaningful medical concepts (phenotypes) from such

temporal EHR by irregular tensor factorization. Despite recent ad-

vances, existing PARAFAC2 methods are unable to robustly handle

erroneousness and missing data which are prevalent in clinical prac-

tice. We propose REPAIR, a Robust tEmporal PARAFAC2 method

for IRregular tensor factorization and completion method, to com-

plete an irregular tensor and extract phenotypes in the presence

of missing and erroneous values. To achieve this, REPAIR designs

a new effective low-rank regularization function for PARAFAC2

to handle missing and erroneous entries, which has not been ex-

plored for irregular tensors before. In addition, the optimization of

REPAIR allows it to enjoy the same computational scalability and in-

corporate a variety of constraints as the state-of-the-art PARAFAC2

method for efficient and meaningful phenotype extraction. We

evaluate REPAIR on two real temporal EHR datasets to verify its ro-

bustness in tensor factorization against various missing and outlier

conditions. Furthermore, we conduct two case studies to demon-

strate that REPAIR is able to extract meaningful and useful pheno-

types from such corrupted temporal EHR. Our implementation is

publicly available
1
.
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1 INTRODUCTION
Tensors are a popular algebraic structure for a wide range of applica-

tions, due to their exceptional capability to model multidimensional

relationships of the data. Among them, regular tensors with aligned

dimensions for all modes have been extensively studied, for which

various tensor factorization structures are proposed depending on

the applications, e.g. Canonical Polyadic (CP) [8, 13, 15], Tucker

[35], and tensor singular value decomposition (SVD) [21, 22]. On the

contrary, the irregular tensor with unaligned size along one of its

modes is under studied [4, 14], despite its prevalence in real-world

practice.

As the motivating example considered in this paper, electronic

health records (EHR) are datasets collected during clinic practice,

which encompasses clinical records of a large number of distinct pa-

tients across a long period of time. EHR data do not always directly

and reliably map to medical concepts that clinical researchers need

or use [20]. Tensor factorization methods have shown great poten-

tial in discovering meaningful and interpretable clinical concepts

(or phenotypes) from complicated health records [2, 16–18, 32, 37].

The resulting tensor factors are reported as phenotype candidates

that automatically reveal patient clusters on specific diagnoses and

procedures [9]. Such analysis can be particularly useful for under-

standing disease subtypes and clinical progressions in different

subpopulations for new and rapidly evolving diseases such as the

current COVID-19 pandemic. Yet, temporal EHR data poses addi-

tional challenges for phenotype analysis due to: 1) the irregularity

of the data along the time dimension, and 2) the potentially missing

and erroneous entries during the data collection over long period

of time. Concretely, the records are unaligned in time from patient

to patient because of the varying disease states and progressions,

which lead to variable number of clinic encounters and different

time gaps between consecutive visits. In addition, they are prone

to corruptions due to various reasons during clinical practice, for
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example, equipment failure, inexperienced clinical staff, and in-

accurate information recording. As a result, most existing tensor

factorization frameworks for regular tensors are not applicable or

do not work well.

PARAFAC2 [12] is a dedicated multidimensional algebraic frame-

work for modeling irregular tensors, which has a natural factoriza-

tion structure for handling variable sizes along the unaligned mode.

In particular, for temporal EHR, recent advances have improved its

computational scalability as well as its factorization interpretability

[2]. Despite these improvements, existing PARAFAC2 methods are

not robust to missing and erroneous elements in the data, which

severely limits its applicability to practical temporal EHR data anal-

ysis.

For regular tensor factorization frameworks, robust mechanisms

are well developed to handle missing and erroneous data, among

which the robust low-rank tensor minimization (RLTM) is one of

the most successful approaches [1, 10, 11, 25–27, 29, 34]. Different

low-rank regularization functions are adopted by these methods,

which vary according to different types of tensor factorization.

However, it is still unknown how to impose low-rank regularization

for PARAFAC2 and design an explicit RLTM mechanism to handle

missing entries and remove erroneous entries.

To fill this gap, we propose REPAIR, a Robust tEmporal PAFA-

FAC2 method for IRregular tensor factorization and completion

(c.f. Figure 1), which is the first robust irregular tensor recovery

method. Given each patient input data Ok with erroneous and

missing entries, REPAIR performs RLTM to separate out the erro-

neous entries Ek from the underlying clean and completed compo-

nents Xk , and uses the clean tensor to form a common low rank

space for PARAFAC2 based candidate phenotype extraction, i.e.

Xk ≈ UkSkV⊤. We achieve this by addressing two main challenges:

First, specific low-rank regularizations need to be designed for

PARAFAC2 to suit its decomposition structure which has not been

explored in existing work. Second, the robust factorization needs

to incorporate additional constraints such as temporal smoothness,

non-negativity and sparsity [2] to obtain more meaningful and

accurate phenotypes.

We summarize our contributions below:

(1) We propose a robust PARAFAC2 tensor factorizationmethod for

irregular tensors with a new low-rank regularization function

to handle potentially missing and erroneous entries in the input

tensor. This is the first work that explicitly handles missing and

erroneous data for irregular tensor factorization.

(2) We design an efficient two-phase optimization to simultane-

ously: 1) learn and complete the clean underlying tensor by

decomposing the original tensor {Ok } into the underlying low-

rank tensor {Xk } and the sparse error tensor {Ek } ( Fig. 1 blue
box); and 2) extract phenotypes by factorizing the clean ten-

sor Xk = UkSkV⊤ (Fig. 1 red box). The phenotype extraction

phase incorporates many practical constraints for improving

interpretability of the extracted phenotypes, including temporal

smoothness, non-negativity and sparsity.

(3) We evaluateREPAIR on two real-world temporal EHR datasets

with a set of experiments, which verify the improved recovery

and factorization robustness against missing and erroneous

values. Through two case studies: identification of higher-risk

Table 1: Symbols and notations used in this paper

Symbol Definition

a,A,A Vector, Matrix, Tensor

Ak k-th frontal slice of A

A(n) Mode-n matricization of A

∥ · ∥1 ℓ1-norm

∥ · ∥F Frobenius norm

∥ · ∥∗ Nuclear norm

∗ Hadamard (element-wise) multiplication

⊙ Khatri Rao product

◦ Outer product

⟨·, ·⟩ Inner product

patient subgroups, and in-hospital mortality prediction, we

further demonstrate the superior utility of the factorization

outputs of REPAIR to facilitate downstream temporal EHR data

analysis.

2 BACKGROUND
In this section, we define the notations and present background on

robust low-rank tensor minimization followed by PARAFAC2 and

its application for temporal EHR phenotyping. Table 1 summarizes

commonly used notations.

For temporal EHR, let the observed tensor be O = {Ok } ∈

{RIk×J } (c.f. leftmost tensor in Figure 1) with 3 modes, where each

frontal sliceOk represents patient k’s record of J types of diagnosis,
treatments or lab test results (along mode 2), across Ik clinical

encounters (along mode 1) varying from patient to patient. The

aim of temporal EHR phenotyping is to discover medical concepts

by making use of all K frontal slices, i.e. the information of all K

patients, and discerning as much inter-relationship across different

patients (i.e. across frontal slice) as possible.

2.1 Robust Low-rank Tensor Factorization and
Completion

For regular tensors (i.e. assuming {Ok } are aligned in all dimen-

sions), the robust low-rank tensor minimization (RLTM) is one of

the most successful approaches to handle incomplete and corrupted

input tensors. For such a regular tensor O, RLTM separates it into

an underlying clean and completed tensor X and an error tensor

E. In practice, the clean part is often low-rank while the erroneous

part is sparse. Thus, RLTM imposes a low-rank regularization func-

tion ∥ · ∥lr and a sparsity regularization function ∥ · ∥1 onX and E,

correspondingly:

argmin

X,E
∥X∥lr + ρ0∥E∥1, s .t . PΩ (O) = PΩ (X + E), (1)

where Ω is the index set of non-missing entries and PΩ keeps

entries in Ω and zeros out others (i.e., missing entries), ρ0 is a

balancing constant. RLTM is a multidimensional extension to the

robust low-rank matrix minimization [7], but it is intrinsically

more difficult. The main challenge lies in introducing a proper low-

rank definition and designing an effective and efficient low-rank

regularization. Unlike a low-rank matrix, the low-rank definition
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Figure 1: OverviewofREPAIR: robust irregular tensor PARAFAC2 factorization for EHRphenotyping on input patients’ dataO.
Ok contains erroneous andmissing entries, which can be decomposed into erroneous Ek and clean and completed components
denoted by Xk . PΩ (Ok ) = PΩ (Ek + Xk ). The underling clean tensor is decomposed by PARAFAC2 into Xk ≈ UkSkV⊤.

for tensor is not unique and should be adapted according to each

tensor decomposition model (e.g., CP, Tucker, tensor SVD).

For example, Tuckermodel defines the rank ofX based on thema-

trix rank of its matricization, i.e. the vector (rank (X(1) ), rank (X(2) ),

rank (X(3) )). CP decomposesX ∈ RI1×I2×I3 into the sum of R rank-

one tensors byX =
∑R
r=1 A(:, r ) ◦B(:, r ) ◦C(:, r ), where A,B,C are

factorization matrices and the smallest R to achieve such decompo-

sition is defined to be the rank R∗ ofX under CPmodel. It is difficult

to accurately estimating R∗ for CP (in fact, NP-hard to determine),

as well as to deal with matrix rank used by Tucker. More tractable

relaxations are then proposed with various low-rank regularization

functions [10, 25, 26, 34].

Despite their varieties, the existing low-rank regularization func-

tions are designed for regular tensor factorization models and

cannot be applied to an irregular tensor factorization model like

PARAFAC2. In fact, they are not even well-defined on irregular

tensors and PARAFAC2. Thus, there lacks a tractable and effective

low-rank regularization for PARAFAC2 applicable to large-scale

irregular tensors.

2.2 PARAFAC2 for Temporal EHR
PARAFAC2 is the state-of-the-art tensor factorization structure for

irregular tensors that do not align naturally along one of its modes.

The classic PARAFAC2 (c.f. Fig. 1 red box) for irregular tensor {Xk }

is formalized below [24]:

Definition 1. (Classic PARAFAC2 model)

argmin

{Uk }, {Sk },V

K∑
k=1

1

2

∥Xk − UkSkV
⊤∥2F ,

s.t. Uk = QkH,Q⊤k Qk = I, Sk is diagonal, where Qk ∈ R
Ik×R is

orthogonal, Ik ∈ RR×R is the identity matrix and R is the target rank
of the PARAFAC2 decomposition.

For temporal EHR data, the factorization matrices have the fol-

lowing interpretation:

▷ Uk ∈ RIk×R contains the temporal evolution for patient

k : the r -th column of Uk indicates the evolution of the r -th
phenotype for all Ik clinical visits for patient k .

▷ V ∈ RJ×R reflects the phenotypes. Each non-zero entry

of V indicates the membership of the corresponding j-th
medical feature in the r -th phenotype.

▷ Sk ∈ RR×R is a diagonal matrix with the importance

membership of patient k in each one of the R phenotypes.

It is often organized into W ∈ RR×K+ with each row of W
composed by the diagonal of Sk , i.e. W(:,k ) = diag(Sk ).

SPARTan [32] scales PARAFAC2 to large temporal EHR pheno-

typing by introducing a sparseMTTKRP (abbreviated forMatricized-

Tensor-Times-Khatri-Rao-Product) module, which takes advantage

of the high input sparsity to reduce the per-iteration cost. Following

its efficiency improvement, COPA [2] further introduces various

constraints/regularizations to improve the interpretability of the

factor matrices for more meaningful pheonotype extraction. For

example, COPA introduces the M-spline constraint [33] to Uk to

capture the temporal smoothness, non-negative constraint to Sk to

get positive weight, and sparsity (e.g., ℓ1 norm regularization) to V
to induce sparse phenotype definitions.

In sum, despite their improvements on computational efficiency

and output interpretability, existing PARAFAC2 methods do not

explicitly address the problem of extracting meaningful phenotypes

from EHR datasets with moderate ratio of missing and error entries,

which severely limits them from more robust clinical usage.

3 PROPOSED METHOD
3.1 Low-rank Regularization for PARAFAC2
As mentioned, the effective low-rank regularization has not been

studied for irregular tensors. Recent work [38] proposes to recover

each of {Xk }’s frontal slices matrix by matrix by robust low-rank

matrix completion techniques [6, 28]. The drawback of this ap-

proach is that it cannot capture the internal structural correlations

across frontal slices, i.e. common information among patients, for

temporal EHR phenotyping. As can be seen from our experiments,

this approach does not provide satisfactory recovery performance.

On the contrary, we propose to impose the low-rankness on {Xk }

through adding nuclear norm constraints on the internal factoriza-

tion matrices H,V,W, which are shared by all frontal slices thus

capable of capturing cross-slice information.
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Definition 2. For irregular tensor

X = {Xk } ≈ PARAFAC2({Qk },H,V,W),

the low-rank regularization function is defined as

∥X∥lr := ∥H∥∗ + ∥V∥∗ + ∥W∥∗. (2)

Our low-rank regularization function enjoys the following nice

properties: 1) it is natural to the decomposition structure of the

PARAFAC2 model; 2) it can effectively recover the underlying clean

and completed tensor {Xk } by capturing cross frontal slice infor-

mation.

3.2 REPAIR: Model
Having defined the low-rank regularization function in Defini-

tion 2, we formalize the objective function for the REPAIR model

in Definition 3. It applies the RLTM framework (i.e. eq.(1)) to

PARAFAC2, which separates the underlying clean and completed

tensor X = {Xk } and the erroneous tensor E = {Ek } given the

missing and corrupted observation tensor O = {Ok }. Meanwhile,

REPAIR decomposes {Xk } into PARAFAC2 structure. The tensor

recovery of X is enforced by the linear constraint between O, X,

E in eq (4), low-rank regularization for X = {Xk } and sparsity con-

straint for E in the first row of eq (3). The tensor factorization ofX

is enforced by the PARAFAC2 loss for X, the temporal smoothness,

nonnegativity, and sparsity constraints in the second row of eq (3)

and additional constraints in eq (5).

For EHR phenotype discovery, various constraints should be

imposed on the factorization matrices to yield meaningful and high-

interpretability phenotypes. The REPAIR model accommodates

such interpretability-purposed constraints in eq.(3) including: tem-

poral smoothness for c1 (H), non-negativity for {c2 (Sk )}, sparsity
for c3 (V).

Definition 3. (REPAIR objective function)

argmin

Qk ,H,Sk ,V

K∑
k=1

( PARAFAC2 loss forX︷                 ︸︸                 ︷
∥Xk − UkSkV

⊤∥2F +

sparsity for E︷           ︸︸           ︷
ρ0∥PΩ (Ek )∥1)+

low-rankness forX︷                                ︸︸                                ︷
ρ1∥H∥∗ + ρ2∥V∥∗ + ρ3∥W∥∗ +

smoothness︷︸︸︷
c1 (H) +

nonnegativity︷      ︸︸      ︷
K∑
k=1

c2 (Sk ) +

sparsity︷︸︸︷
c3 (V) ,

(3)

s .t . for k = 1, ...,K ,

linear constraint betweenO,X,E︷                           ︸︸                           ︷
PΩ (Ok ) = PΩ (Xk + Ek ) , (4)

Sk = diag(W(k, :)), Sk is diagonal︸                                        ︷︷                                        ︸
relation between S,W

, Uk = QkH, Q
⊤
k Qk = I︸                        ︷︷                        ︸

constraints for PARAFAC2 decomposition
(5)

where H, {Sk }, I ∈ RR×R , Qk ∈ R
Ik×R .

3.3 REPAIR: Optimization
To solve the REPAIR model, a straightforward approach is to in-

troduce auxiliary variables for the low-rank and interpretability

regularizations, then solve the problem by multi-block Alternat-

ing Direction Method of Multipliers (ADMM) [3]. Inspired by the

more flexible Alternating Optimization ADMM (AO-ADMM) [19],

we design a two-phase alternative optimization algorithm to ac-

commodate more constraints. The REPAIR optimization proceeds

by iterating between the two phases: I) updating the factorization

matrices {Qk },H,V,W; II) separating the X and E from O. For I),

we factorize the intermediate (inaccurate) recovered tensor X by

solving an approximated PARAFAC2; for II), we follow standard

ADMM to convert the linear constraint of eq.(4) by introducing

Lagrangian dual variable {ΓkO } to get rid of the constraint as shown

in Definition 3. This way, REPAIR can accommodate a variety of

constraints for each factorization for better interpretability. Also,

the optimizations for each factor are more independent, which

makes it easier to deal with.

Definition 4. The augmented Lagrangian dual objective is,

K∑
k=1

(
∥Xk − QkHSkV

⊤∥2F − ⟨Γ
k
O ,Ok − Xk − Ek ⟩

+
ηkO
2

∥Ok − Xk − Ek ∥
2

F + ρ0∥PΩ (Ek )∥1
)

+
(
ρ1∥H∥∗ + ρ2∥V∥∗ + ρ3∥W∥∗

)
+
(
c1 (H) + c2 (W) + c3 (V)

)
s .t . Sk = diag(W(k, :)), Q⊤k Qk = I, for k = 1, ...,K .

Phase I: Approximated PARAFAC2. In the first phase, we up-

date the factorization matrices {Qk },H,V,W with {Xk } and {Ek }
fixed, which can be intuitively seen as decomposing the latest re-

covered tensor {Xk } into PARAFAC2. In practice, we observe that

it is enough to run PARAFAC2 by one iteration in this phase to

achieve the overall convergence, which avoids heavy computation

of solving precise PARAFAC2.

Update Qk : To update Qk
, we need Lemma 1 below:

Lemma 1. The Orthogonal Procrustes problem is:

Q# = argmin

Q:Q⊤Q=I
∥QA − B∥2F ,

which has the closed-form solution: Q# = PZ⊤, where [P, Σ,Z] =
svd(BA⊤) and svd(·) is singular value decomposition.

When applied to the update of Qk , with other factors fixed, we

have

Qk = argmin

Qk :Q⊤kQk=I
∥Xk − QkHSkV

⊤∥2F . (6)

Let B = Xk and A = HSkV⊤ and by Lemma 1:

Qk = PkZ
⊤
k , where[Pk , Σ,Zk ] = svd(XkVSkH

⊤). (7)

Update H: After obtaining {Qk }, we denote Yk = Q⊤k Xk , for

k = 1, ...,K , and let Y be the tensor with Yk being its frontal slice.

We then update H,V,W alternatively by solving three constrained

least squares sub-problems. Due to the symmetry of the three sub-

problems, we elaborate the update for H as an example.

H = argmin

H
∥Y(1) − H(V ⊙W)⊤∥2F + ρ1∥H∥∗ + c1 (H).
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Table 2: Additional Symbols for REPAIR Optimization

Symbol Definition

ρ0, ρ1, ρ2, ρ3 Balancing hyper-parameters

Hl ,Vl ,Wl
Auxiliary variable for low-rank constr.

ΓlH , Γ
l
W , Γ

l
V Lagrangian dual for low-rank constr.

ηlH ,η
l
W ,η

l
V Lagrangian constant for low-rank constr.

Hc ,Vc ,Wc
Auxiliary variable for interpretability constr.

ΓcH , Γ
c
W , Γ

c
V Lagrangian dual for interpretability constr.

ηcH ,η
c
W ,η

c
V Lagrangian constant for interpretability constr.

We introduce two auxiliary variables Hl
and Hc

to separate the

low-rank and interpretability constraints:

argmin

H,Hl ,Hc
∥Y(1) − H(V ⊙W)⊤∥2F + ρ1∥H

l ∥∗ + c1 (Hc ),

s .t . Hl = H, Hc = H.

The above can be solved by ADMM after introducing the La-

grangian dual variables ΓlH , Γ
c
H and constants ηlH ,η

c
H , correspond-

ingly:

argmin

H,Hl ,Hc
∥Y(1) − H(V ⊙W)⊤∥2F + ρ1∥H

l ∥∗ + c1 (Hc )

− ⟨ΓlH ,H − H
l ⟩ +

ηlH
2

∥H − Hl ∥2F

− ⟨ΓcH ,H − H
c ⟩ +

ηcH
2

∥H − Hc ∥2F .

To solve it by ADMM, we have the following update sequence

for H,Hl ,Hc
and dual ΓlH , Γ

c
H :

H =
(
Y(1) (V ⊙W) + ΓlH + ΓcH + η

l
HHl + ηcHHc

)
·

(
(V⊤V) ∗ (W⊤W) + (ηlH + η

c
H )I
)†
,

(8)

where ⊙ is the Khatri Rao product, ∗ is the Hadamard product and

† is the pseudo-inverse.

Hl = argmin

Hl

ηlH
2

∥Hl − H∥2F − ⟨Γ
l
H ,H

l − H⟩ + ρ1∥Hl ∥∗,

which has the proximal operator [30] with respect to the nuclear

norm ∥ · ∥∗, a.k.a. singular value thresholding [6], as its closed-form

solution:

Hl = prox ρ
1

ηlH
∥ · ∥∗

(H +
ΓlH

ηlH

) = PDiag(max{0,σ −
ρ1

ηlH

})Z⊤, (9)

where [P, Diag(σ ),Z] = svd(H +
ΓlH
ηlH

).

Hc = argmin

Hc

ηcH
2

∥Hc − H∥2F − ⟨Γ
c
H ,H

c − H⟩ + c1 (Hc ),

which has the proximal operator with respect to the constraint

function c1 (·) as its closed-form solution:

Hc = prox 1

ηcH
c1 (H +

ΓcH
ηcH

). (10)

The Lagrangian dual variables are update as follows:

ΓcH = ΓcH − η
c
H (H − Hc ); (11)

ΓlH = ΓlH − η
l
H (H − Hl ). (12)

Update V,W: The update for V (along with Vl ,Vc ) andW (along

with Wl ,Wc
) are similar to H:

V =
(
Y(2) (H ⊙W) + ΓlV + ΓcV + η

l
V V

l + ηcV V
c
)

·
(
(H⊤H) ∗ (W⊤W) + (ηlV + η

c
V )I
)†
;

Vl = prox ρ
3

ηlV
∥ · ∥∗

(V +
ΓlV

ηlV

);Vc = prox 1

ηcV
c3 (V +

ΓcV
ηcV

);

ΓcV = ΓcV − η
c
V (V − Vc ); ΓlV = ΓlV − η

l
V (V − Vl ).

(13)

W =
(
Y(3) (V ⊙ H) + ΓlW + ΓcW + η

l
WWl + ηcWWc

)
·
(
(V⊤V) ∗ (H⊤H) + (ηlW + η

c
W )I
)†
;

Wl = prox ρ
2

ηlW
∥ · ∥∗

(W +
ΓlW

ηlW

);Wc = prox 1

ηcW
c2 (W +

ΓcW
ηcW

);

ΓcW = ΓcW − η
c
W (W −Wc ); ΓlW = ΓlW − η

l
W (W −Wl ).

(14)

Phase II: Robust Underlying Tensor Recovery. In this second

phase, we update the low-rank tensor {Xk } which is the underlying

clean and completed tensor, and the sparse tensor {Ek } which is

the corrupted tensor, as well as the Lagrangian dual variable {ΓkO }.

Update {Xk }: It amounts to

Xk = argmin

Xk
∥Xk − QkHSkV

⊤∥2F − ⟨Γ
k
O ,Ok − Xk − Ek ⟩

+
ηkO
2

∥Ok − Xk − Ek ∥
2

F ,

which has the solution

Xk = QkHSkV
⊤ − ΓkO + η

k
O (Ok − Ek ). (15)

Update {Ek }: The update ofEk separates into PΩ (Ek ) and PΩ⊥ (Ek ):

PΩ (Ek ) = PΩ (prox ρ
0

ηkO
∥ · ∥1

(Ok − Xk −
1

ηkO

ΓkO )), (16)

where prox ρ
0

ηkO
∥ · ∥1

(·) is the proximal operator for the ℓ1-norm, a.k.a.

soft-thresholding.

PΩ⊥ (Ek ) = PΩ⊥ (Ok − Xk ). (17)

Update {ΓkO }: This is Lagriangian dual variable update:

ΓkO = ΓkO − η
k
O (Ok − Xk − Ek ). (18)

3.4 REPAIR: Algorithm and Complexity
The complete REPAIR algorithm is summarized in Algorithm 1.

The following theorem summarizes the computational complexity

of Algorithm 1.
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Algorithm 1 The complete REPAIR algorithm

Input: Input tensor O; Model parameters ρ0-ρ3; Optimization pa-

rameters η’s; Interpretability constraint types c1, c2, c3; Initial
rank estimation R.

1: while Not reach convergence criteria do
2: %% Phase I begins

3: while Not reach inner loop max do
4: Update {Qk } by eq.(7);

5: Update H,V,W-related variables sequantially;

6: end while
7: %% Phase II begins

8: Update {Xk } by eq.(15);

9: Update {Ek } by eq.(16)&(17);

10: Update {ΓkO } by eq.(18).

11: end while
Output: Phenotype factor matrices {Uk } = {QkH}, {Sk },V; Recov-

ered tensor {Xk }.

Theorem 1. (Per-iteration computational complexity of REPAIR
algorithm) For an input tensor Ok : RIk×J , f or k = 1, ...,K and ini-
tial target rank estimation R, Algorithm 1’s per-iteration complexity
is O (3R2 JK ).

Proof. REPAIR’s per-iteration complexity breaks down as fol-

lows: Line 4 costs O (min{R2I ,RI2}), where I denotes the maxi-

mum among {Ik }; Line 5, updating H,V,W costs O (3R2 JK ), updat-

ing Hl ,Vl ,Wl
costs O (R2 (R + J + K )), updating Hc ,Vc ,Wc

costs

O (R (R + J + K )); Line 8-10 cost O (4
∑K
k=1 Ik J ). As a result, the

per-iteration complexity is O (3R2 JK ). □

Remark 1. If the tensor {Yk } is sparse and sparse MTTKRP [32]
is adopted for updating H,V,W, the O (3R2 JK )-term further reduces
to O

(
3R2nnz (Y)K

)
, where nnz (Y) denotes the maximum number of

none-zero columns among {Yk }. In practice, because of large number
of patients K , R ≪ J ,K and R + J + K ≪ nnz (Y)K , the overall
per-iteration complexity is O (3R2nnz (Y)K ), which is the same as
SPARTan and COPA.

4 EXPERIMENTS
4.1 Experiment Setup
4.1.1 Datasets.
We evaluate REPAIR on two real-world publicly-available temporal

EHR datasets: CMS
2
and MIMIC-III

3
.

CMS: Centers for Medicare and Medicaid Services (CMS) contains

synthesized data of Medicare beneficiaries in 2008 and their claims

from 2008 to 2010. We construct a three-mode tensor with patients

(alongmode-3), diagnosis or ICD9 codes (alongmode-2), and clinical

visits (along mode-1). Each tensor value Oi jk indicates the number

of times a patient k has a diagnosis j during visit i . We keep records

of patients with at least 2 hospital visits. The resulting number of

patients is 50,000 with 284 features (diagnosis categories) and the

maximum number of observations for a patient is 1500. The number

2
https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-

Public-Use-Files/SynPUFs/DE_Syn_PUF.html

3
https://mimic.physionet.org/

of non-zero elements is 49 million. 89% of the non-zero elements

are 1, and 11% are 2.

MIMIC-III: The intensive care unit (ICU) dataset is collected be-

tween 2001 and 2012. Similar to CMS, we construct the three-mode

tensor and keep records of patients with at least 2 hospital visits.

We select 202 ICD-9 codes that have the highest frequency as in

[23]. The resulting number of patients is 2323 with 202 features

(diagnosis codes) and the maximum number of observations for a

patient is 41. The number of non-zero entries is 3 million. 96% of

non-zero elements are 1, and 4% are 2.

4.1.2 Methods for Comparison.
Since there are no existing robust methods for irregular tensor fac-

torization with missing and erroneous data, we compare with two

groups of methods: 1) state-of-the-art irregular tensor factorization

methods, which however have no mechanisms to handle missing

and erroneous data; 2) we adapt existing robust methods for regular

tensor factorization to irregular tensors for comparison.

1) Irregular tensor factorization methods.
• SPARTan [32]- scalable PARAFAC2: A recently-proposed

methodology for fitting PARAFAC2 on large and sparse data.

It does not explicitly address missing or erroneous data.

• COPA [2]- scalable PARAFAC2 with additional regu-
larizations: A state-of-the-art irregular tensor factorization

method. It further introduces various constraints/regularizations

to improve the interpretability of the factor matrices for more

meaningful pheonotype extraction.

2) Adapted robust regular tensor factorization methods.
• CP-WOPT [1] - robust method for regular tensors: CP-
WOPT is a robust method for regular tensors which uses a

weighted optimization method for CP tensor completion and

factorization with incomplete data. To make it work with

irregular tensors, we first zero-pad the irregular tensors to

aligned ones and then apply CP-WOPT.

• lrmcR [28] + COPA - robust method for matrix com-
pletion: lrmcR [28] is a robust low-rank matrix completion

method. To make it work for irregular tensors, we apply

lrmcR to recover the frontal slices one by one and then apply

COPA for phenotype extraction.

4.1.3 Implementation details.
REPAIR

4
is implemented in Matlab R2019a and includes functional-

ities from the Tensor Toolbox
5
. We utilize the Parallel Computing

Toolbox of Matlab. For CMS dataset, 30 workers are used; and for

MIMIC-III, 4 workers are used. We report the hyper-parameters of

REPAIR in the experiment in Table 3. The code of COPA and SPAR-

Tan are publicly available at: https://github.com/aafshar/COPA;

https://github.com/kperros/SPARTan. For the COPA related meth-

ods, we use the same regularizations c1, c2, c3 with REPAIR, as given
in Defintion 3.

We evaluate recovery accuracy and robustness of the tensor fac-

torization against various conditions of missing and erroneous val-

ues. We empirical study the convergence behaviour of all compared

methods. In case studies, we evaluate the quality of the factorization

matrices (i.e. extracted phenotypes) for downstream analysis via:

4
https://github.com/Emory-AIMS/Repair

5
https://www.tensortoolbox.org/
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Figure 2: Robustness against varying ratio of missing entries
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Figure 3: Robustness against varying ratio of erroneous entries
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Figure 4: Impact of varying rank estimation

Table 3: Parameters for CMS and MIMIC-III

Parameter CMS MIMIC-III

ρ0 1e-3 1e-3

ρ1 1e-3 1e-3

ρ2 1e-4 1e-4

ρ3 1e-4 1e-4

c1 253 270

c3 0.0000085 0.0000085

1) identification of higher-risk patient sub-groups; 2) in-hospital

mortality prediction. Finally, we illustrate phenotypes extracted by

REPAIR.

4.2 Tensor Factorization Robustness
In order to test the robustness of REPAIR model against missing

and error entries, we randomly add missing values and error entries

into the two datasets. We design two types of errors. The first is

referred as pure outliers, where we randomly pick tensor entries

and set their values to be 4, which largely deviates from normal

values (1 and 2 in these datasets). The second is mixed error, where

we randomly pick certain entries and set their values to be 3 or

4 (outliers) with half probability, and 1 or 2 (normal values but

flipped from the original value) with half probability. The original

uncorrupted tensor denoted as {Gk } serves as the ground truth.

We adopt the FIT ∈ (−∞, 1] score [5] as the quality measure (the

higher the better):

FIT = 1 −

∑K
k=1 ∥Gk − UkSkVT ∥2∑K

k=1 ∥Gk ∥
2

. (19)

In the following experiment, we run each setting for 5 different

random initialization and report the average FIT . When the com-

pared methods’ FIT drop below 0 (i.e. fail to recover), we report

the averaged highest FIT before the algorithm diverges.

Robustness against VaryingRatio ofMissing Entries.Wefirst

evaluate the impact of varying missing ratios on the robustness of
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Table 4: Basis number for CMS and MIMIC-III

Rank R CMS MIMIC-III

10 102 140

20 190 200

30 215 220

40 253 270

50 270 320

60 320 360

the methods with fixed 30% error ratios as Figure 2 shows. we use

R = 40 and the detailed parameters are shown in Table 3 and 4 in the

Appendix. If no error and missing entries are added into data sets,

REPAIR, COPA, SPARTAN and lrmcR + COPA methods can achieve

similar FIT scores around 0.42 (please note that it is a typical FIT

range for this task, e.g., [2]). However, the four baselines’ FIT scores

quickly drop as the missing ratio increases, in many cases below

0, which indicates baselines fail to recover the tensor even with

small missing ratios. Repair outperforms all methods significantly.

lrmcR+COPA performances slightly better than COPA thanks to its

completion of the slices. lrmcR + COPA and COPA perform better

than SPARTan thanks to its additional temporal constraints. CP-

WOPT performs the worst, since it does not address the irregularity

of the tensors, even when it explicitly deals with missing data,

which indicates the importance of addressing the irregularity. We

also observe that pure outlier’s performances are often better than

mixed error cases, as pure outliers is easier for REPAIR model to

separate the error entries.

Robustness against Varying Ratio of Erroneous Entries. We

set the missing ratio to be 30%, and change the error ratio from 5% to

50%. Figure 3 shows the FIT scores of differentmethodswith respect

to varying error ratios for the two data sets under two error cases.

With increasing error ratios, four baselines’ recovery performance

drop dramatically, while REPAIR enjoys a robust performance with

an average FIT around 0.32.

Impact of Varying Initial Target Rank Estimation. We set

missing and error ratios both to 30% and vary the initial rank esti-

mation R. The detailed c1 (basis function number used by M-spline

function for promoting temporal smoothness) for different data

sets and various ranks are shown in Table 4. With a higher rank R,
the FIT of REPAIR slightly increases while always outperforming

all other methods as Figure 4 shows. This is because the low-rank

regularization function is able to iteratively decrease the target

rank during the optimization (e.g. by soft-thresholding the singular

values) and make it approach the optimal one.

4.3 Convergence Comparison.
Figure 6 shows the convergence comparison of REPAIR, SPARTan,

COPA, lrmcR + COPA, CP-WOPT on CMS with missing ratio 10%

and mixed error ratio 20% (under this setting all algorithms can

recover the tensor without failure). By Figure 6, REPAIR flats around

9-10 iterations (with a higher FIT score than baselines), while it

takes baselines 14-15 iterations. This shows that REPAIR not only

enjoys more robust recovery, but also faster convergence.

Table 5: MIMIC-III Phenotypes discovered by REPAIR. The
red color corresponds to diagnosis and blue color corre-
sponds to procedures.

Heart failure
Congestive heart failure, unspecified

Atrial fibrillation

Coronary atherosclerosis of native coronary artery

Coronary arteriography using two catheters

Transfusion of packed cells

Left heart cardiac catheterization

Hypertension and hyperlipidemia
Unspecified essential hypertension

Diabetes mellitus without mention of complication

Coronary atherosclerosis of native coronary artery

Other and unspecified hyperlipidemia

Esophageal reflux

Pure hypercholesterolemia

Extracorporeal circulation auxiliary to open heart surgery

Coronary arteriography using two catheters

Single internal mammary-coronary artery bypass

Left heart cardiac catheterization

Kidney disease
Acute kidney failure, unspecified

Hypertensive chronic kidney disease, unspecified

Unspecified essential hypertension

Urinary tract infection, site not specified

Hemodialysis

Venous catheterization for renal dialysis

Transfusion of packed cells

Respiratory failure and sepsis
Acute respiratory failure

Severe sepsis

Atrial fibrillation

Septic shock

Urinary tract infection, site not specified

Insertion of endotracheal tube

Enteral infusion of concentrated nutritional substances

Continuous invasive mechanical ventilation

Closed [endoscopic] biopsy of bronchus

Arterial catheterization

Percutaneous abdominal drainage

Transfusion of packed cells

4.4 Quality of the Extracted Phenotypes: Two
Case Studies

The previous experiments show the robustness of REPAIR in terms

of how well the factorization matrices (i.e. the extracted pheno-

types) recover the ground truth tensor under the FIT metric. In this

subsection, our goal is to evaluate how meaningful and useful the

extracted phenotypes are. Table 5 illustrates the first set of pheno-

types extracted by REPAIR when R = 4 given corrupted MIMIC-III

data, which shows the correlations between diagnosis and proce-

dures related to coronary disease. We next show quantitatively how

the phenotypes can be used for various downstream analysis. We
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Figure 5: tSNE visualization of patient representations learned by REPAIR, SPARTan, COPA, CP-WOPT, and lrmcR+COPA.
Each point represents a patient, the color corresponding to the weight of the “oncological conditions” phenotype (lighter
means higher weight).

Method REPAIR SPARTan COPA CP-WOPT lrmcR + COPA

Higher-risk Cluster Average Mortality Rate 68.79% 59.86% 60.03% 59.60% 60.55%

Lower-risk Cluster Average Mortality Rate 49.91% 59.13% 58.92% 59.43% 58.45%

Difference 18.88% 0.83% 1.11% 0.5% 2.1%

Table 6: Summary ofAverageMortality Risk of the higher-risk cluster, lower-risk cluster, and their difference. The two clusters
are obtained by k-means clustering (k = 2). REPAIR can achieve 18.88% difference, which has the best discriminative capability
among all compared methods, under the setting of adding 30% erroneous and 30% missing entries.
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Figure 6: Convergence comparison of REPAIR, SPARTan,
COPA, lrmcR + COPA, CP-WOPT

use MIMIC-III for this set of experiments and set both missing and

error ratios to 30%.

Identification of Higher-risk Patient Subgroups. The low-
dimensional patient representations of PARAFAC2 are effective in

distinguishing between higher and lower mortality risk patients

[31]. We attempt to test if REPAIR can identify higher-risk patient

subgroups if the data contains erroneous and missing entries. The

k-th row of patient-by-phenotypes matrix W ∈ Rk×R contains

the diagonal of Sk , which indicates importance membership of pa-

tient k in each of the phenotypes. We select the largest-variance

column among Sk , which is called the “oncological conditions” phe-

notype. We set R = 4, and use the tSNE [36] software to reduce

4-dimensional vectors to 2-dimensional space, and color each point

corresponding to the weight of the “oncological conditions” phe-

notype (lighter means higher weight). As Figure 5 shows, REPAIR

can successfully split the patients into two sub-groups while the

baselines fail to distinguish the patients.
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Figure 7: In-hospital mortality prediction in AUC. REPAIR
outperforms 17% in terms of prediction performance com-
paring to the best baseline method lrmcR + COPA

.

We perform clustering using K-means (with k = 2) on the tSNE

result. For the clusters learned by REPAIR, higher risk cluster (corre-

sponding to the left light sub group in Figure 5a) and the lower-risk

cluster (corresponding to the right dark sub group in Figure 5a) are

68.79%, 49.91% respectively. We summarize the average mortality

risk of the higher-risk cluster, lower-risk cluster, and their differ-

ence in Table 6. REPAIR can achieve 18.88% difference, which has

the best discriminative capability among all compared methods. In

addition, our 18.88%-difference is comparable to the 21%-difference

reported in [31], which is the journal extension of the SPARTan

algorithm [32], and has a clinical expert’s endorsement. Because of

the extra error and missing entries, our setting is more challenging

than [31]. In sum, it shows our method is robust enough to achieve

clinical meaningful result comparable to [31].

In-hospital Mortality Prediction. We also measure REPAIR’s

phenotype extraction quality under missing and error entries by the

predictive power of the discovered phenotypes. A logistic regression
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model is trained using the patients’ membership indicator Sk as

features, which is then utilized for predicting in-hospital mortality.

We use five 70-30 train-test splits and evaluate the model using

the area under the receiver operating characteristic curve (AUC).

As Figure 7 shows, the average score of lrmcR + COPA is 0.605,

which performs best among four baselines. REPAIR’s average score

is 0.703, and offers a 17% prediction performance improvement

when compared to lrmcR + COPA, which verifies the robustness

and usefulness of the extracted phenotypes.

5 CONCLUSION
We have proposed the REPAIR method for robust irregular tensor

factorization and completion with potential missing and erroneous

values. It is built on two major contributions: an effective low-

rank regularization function specific to PARAFAC2 structure and a

two-phase joint optimization for iterative factorization and clean

tensor recovery. Extensive experiments have demonstrated that

REPAIR can robustly extract meaningful phenotypes from missing

and erroneous inputs. In the future, we plan to investigate different

loss functions to further enhance the recovery performance and also

different types of missing data (in addition to Missing Completely

at Random (MCAR) in this paper).
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