
1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 1

Tackling Overfitting in Boosting for Noisy
Healthcare Data

Yubin Park, Joyce C. Ho, Member, IEEE,

Abstract—Analyzing healthcare data poses several challenges including the limited number of samples, missing measurements, noisy
labels, and heterogeneous data types. Tree-based boosting is well-suited for modeling such data as it is insensitive to data types and
missingness. Moreover, Stochastic Gradient TreeBoost is often found in many winning solutions in public data science challenges.
Unfortunately, the best performance requires extensive hyperparameter tuning and can be prone to overfitting. We propose PaloBoost,
a Stochastic Gradient TreeBoost model that uses novel regularization techniques to guard against overfitting and is robust to
hyperparameter settings. PaloBoost uses the out-of-bag samples to perform gradient-aware pruning and estimate adaptive learning
rates. Unlike other Stochastic Gradient TreeBoost models that use the out-of-bag samples to estimate test errors, PaloBoost treats the
samples as a second batch of training samples to prune the trees and adjust the learning rates. As a result, PaloBoost can dynamically
adjust tree depths and learning rates to achieve faster learning at the start and slower learning as the algorithm converges.
Experimental results on four datasets demonstrate that PaloBoost is robust to overfitting and is less sensitive to the hyperparameters.

Index Terms—Gradient Boosting, Overfitting, Healthcare Data, Noisy Data

F

1 INTRODUCTION

Healthcare data is peculiar and unlike data used in many
other applications of machine learning and data mining. The
number of samples (patients) are often small compared to
the number of features [1]. The data perpetually has missing
measurements (e.g., blood tests are often not collected at
every visit). The labels can be noisy due to the subjective
nature of human judgment or even an incomplete repre-
sentation of the patient [2], [3]. Finally, data is collected
from multiple sources and consists of various data types [4].
Thus, predictive models face formidable challenges when
analyzing healthcare data – complex models often suffer
from overfitting while simple models do not provide much
predictive power.

Tree-based boosting, or TreeBoost, is particularly well-
suited for healthcare data. TreeBoost is a stage-wise additive
model where base trees are fitted to the subsampled gradi-
ents (or errors) at each stage [5], [6]. Trees are appealing
due to their insensitivity to data types and distributions [7].
Trees can also readily handle missing data without requir-
ing additional preprocessing such as mean imputation [8].
Moreover, tree-based models are more readily interpretable
and have been widely adopted in healthcare domains [9],
[10].

Stochastic Gradient TreeBoost (SGTB) is one of the most
widely used off-the-shelf boosting algorithms [11], [12], [13].
The randomness introduced by subsampling speeds up the
computation time and mitigates overfitting. SGTB achieves
robust performance over various classification, regression,
and even ranking tasks [14], [15]. Many empirical results

• Y. Park is with Bonsai Research, LLC.
E-mail: yubin@bonsairesearch.com

• J. C. Ho is with Emory University.
E-amil: joyce.c.ho@emory.edu

Manuscript received April 19, 2005; revised August 26, 2015.

have demonstrated SGTB’s ability to model complex and
large data relatively fast and accurately []. Furthermore, the
effectiveness and pervasiveness of SGBT can be found in
many winning solutions in public data science challenges
[13].

While SGTB can generally provide reasonable perfor-
mance with the default hyperparameter settings, to achieve
its best performance usually requires extensive hyperpa-
rameter tuning. In general, there are four hyperparameters
in SGTB to tune: the maximum depth of the tree, the number
of trees, the learning rate, and the subsampling rate. To pick
the best-performing hyperparameters, we need to further
split the training data into two sets: one for fitting SGTBs for
a range of hyperparameters, and the other for comparing the
performance of SGTBs with different hyperparameters [16],
[17], [18], [19], [20]. While the maximum depth, subsam-
pling rate, and learning rate have general guidelines, each
hyperparameter is not independent of one another. Having
deeper trees and more trees can reduce training errors more
rapidly, although they can increase the chance of overfitting
at the same time [5], [21], [22]. Lower learning rates, on the
other hand, can mitigate overfitting to the training data at
each stage, but it needs more trees to reach a similar level of
performance [21]. Thus the delicate balancing act between
overfitting and best performance is more of an art than a
science in practice.

Navigating the fine line between overfitting and best
performance can be even more challenging when the best
performance depends on a narrow range of hyperparameter
configurations. The performance can substantially degrade
if the hyperparameters are slightly off from the “optimal”
region, as shown in Figure 1(a). Moreover, even if the
optimal hyperparameters could be reliably estimated, there
is no guarantee that the hold-out validation data is drawn
from the exact same distribution as the test data – thereby
increasing the chance of performance degradation [23], [24].

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 2

(a) Hyperparameter Sensitive (b) Hyperparameter Robust

Fig. 1. Overfitting Behaviors of Hyperparameter-Sensitive (left)
vs Hyperparameter-Robust Models (right). The performance of
hyperparameter-robust models are less sensitive to the “optimal” hyper-
parameters and a minor distributional shift in test data.

Unfortunately, the described scenario is commonplace in
healthcare applications. Healthcare data tend to have noisy
labels, inaccurate data, small sample sizes, and a large num-
ber of features. Furthermore, predictive tasks in healthcare
often involve some level of distributional shifts in test data1.
Therefore, the development of a “hyperparameter robust”
boosting algorithm that can achieve near-best performance
under a broad range of hyperparameter configurations is
necessary to mitigate these issues. A hyperparameter robust
model, shown in Figure 1(b), can exhibit stable performance
even if the model is very complex.

We present PaloBoost2, a boosting algorithm that makes
it easier to tune the hyperparameters and potentially
achieve better performance. PaloBoost extends SGTB using
two out-of-bag sample regularization techniques: 1) Gradient-
aware Pruning and 2) Adaptive Learning Rate. Out-of-
bag (OOB) samples, the samples not included from the
subsampling process, are commonly available in many
subsampling-based algorithms [25], [26]. In boosting al-
gorithms, OOB errors, or the errors estimated from OOB
samples, are used as computationally cheaper alternatives
for cross-validation errors and to determine the number of
trees, also known as early stopping [21]. However, OOB
samples are under-utilized in SGTB. They merely play an
observer role in the overall training process, ignored and
unused.

PaloBoost, on the other hand, treats OOB samples as a
second batch of training samples for adjusting the learning
rate and max tree depth. At each stage of PaloBoost, the
OOB errors are used to determine the generalization prop-
erties of the tree. If the OOB error does not decrease, the
tree is too specific and likely overfits the in-bag samples.
To mitigate the overfitting effect, the tree leaves are pruned
to reduce the tree complexity, and optimal learning rates
are estimated to control and decrease the OOB errors. Thus,
at each stage, PaloBoost uses in-bag samples for learning
the tree structure, and OOB samples to prune and adjust

1. Some examples of such distributional shifts in test data are 1)
applying a pre-trained readmission prediction model at a newly built
hospital, 2) applying a clinical risk engine for a state-level Medicaid
plan that may change its eligibility criteria every so often, and 3)
applying a utilization prediction engine for commercial health plan
that may change coverage and prior-authorization policies for specific
treatments.

2. “Palo” in PaloBoost stands for Pruning and Adaptive Learning
with Out-of-Bag Samples.

the learning rates. As a result, PaloBoost’s hyperparameter
tuning occurs at each stage with different OOB samples.

We compared the performance of PaloBoost with various
open-source SGTB implementations including Scikit-Learn
[27] and XGBoost [13]. Our benchmark datasets include two
simulated datasets [8], [28] and 3 real healthcare datasets.
The empirical results demonstrate stable, predictive per-
formance in the presence of noisy features. PaloBoost is
hyperparameter robust – considerably less sensitive to the
hyperparameters. In addition, PaloBoost hardly suffers sig-
nificant performance degradations with more trees. The
results also illustrate the adaptive learning rates and tree
depths that guard against overfitting. Thus, PaloBoost offers
a robust, SGTB model that can save computational resources
and remove the art from hyperparameter tuning.

2 BACKGROUND

Boosting algorithms build models in a stage-wise fashion,
where the sequential learning of base learners provides a
strong final model. Breiman demonstrated that boosting
can be interpreted as a gradient descent algorithm at the
function level [29]. In other words, boosting is an iterative
algorithm that tries to find the optimal “function”, where the
function is additively updated by fitting to the gradients (or
errors) at each stage. Later, Friedman formalized this view
and introduced Gradient Boosting Machine (GBM) that
generalizes to a broad range of loss functions [5]. Stochas-
tic Gradient TreeBoost (SGTB) further builds on GBM to
provide better predictive performance. In this section, we
provide the formulation and basics of GBM and illustrate
how SGTB is derived.

2.1 Gradient Boosting Machine
GBM [5] seeks to estimate a function, F ∗, that minimizes the
empirical risk associated with a loss function L(·, ·) over N
pairs of target, y, and input features, x:

F ∗ = argmin
F

N∑
i=1

L(yi, F (xi)). (1)

Examples of frequently used loss functions are squared
error, L(y, F) = (y − F)2 and negative binomial log-
likelihood, L(y, F) = −yF + log(1 + eF), where y ∈ {0, 1}.
GBM solves Equation (1) by applying the gradient descent
algorithm directly to the function F . Each iterative update
of the function F has the form:

Fm(x) = Fm−1(x) + βm
∂

∂F (x)
L(y, F (x))

∣∣∣
F=Fm−1

, (2)

where βm is the step size. With finite samples, we can
only approximate the gradient term with an approximation
function, h(x):

Fm(x) = Fm−1(x) + βmh(x;am), (3)

where am represents the parameters for the approximation
function at iteration m. In GBM, h(x;a) can be any para-
metric function such as neural net [30] and regression tree
[5].

An alternative perspective of GBM is to view it as an
ensemble where the approximation function, h(x), is the

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 3

base learner and βm represents the corresponding weight.
The GBM model produces a final output F of the form:

F (x) = F0 +
M∑
m=1

βmhm(x). (4)

where M is the maximum number of iterations (or trees).
XGBoost assumes this ensemble form F to derive the opti-
mal base learners by applying the Taylor approximation and
a greedy optimization technique [13]. However, PaloBoost is
better understood in the context of the original GBM work
[5].

2.2 Stochastic Gradient TreeBoost

Stochastic Gradient TreeBoost (SGTB) introduces three im-
portant modifications to GBM: (1) tree structure-aware (or
node-wise) step sizes, (2) subsampling at each stage, and
(3) shrinkage technique (i.e. learning rate) [5]. Friedman ob-
served that a tree partitions the input into J disjoint regions
({Rj}J1), where each region predicts a constant value (bj).
Thus, the approximation function can be expressed as:

h(x;a) = h(x; {bj , Rj}J1) =
J∑
j=1

bj1(x ∈ Rj). (5)

This representation allows each region to choose its own
optimal step size, βjm, instead of a single step size per stage
βm to obtain a better predictive model. Therefore, Equation
(3) can be rewritten as:

Fm(x) = Fm−1(x) +
J∑
j=1

γjm1(x ∈ Rjm) (6)

where γjm = βjmbj . As a result, estimating γjm is equiv-
alent to estimating the intercept that minimizes the loss
function within the disjoint region Rjm:

γjm = argmin
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ). (7)

The second important modification in SGTB is sub-
sampling, which is motivated by bagging [25] and Ad-
aBoost [31]. Friedman found that random subsampling of
the training samples greatly improved the performance
and generalization abilities of GBM, while reducing the
computing time. Although the performance improvement
varied across problems, he observed that subsampling has
a greater impact on small datasets with high capacity base
learners. Consequently, he postulated that the performance
improvement may be due to the variance reduction as in
bagging. Typical subsampling rates (q) lie between 0.5 and
0.7.

Lastly, a shrinkage technique was introduced to scale the
contribution of each tree by a factor ν between 0 and 1. This
parameter can also be viewed as the learning rate ν in the
context of stochastic gradient descent. Lower ν values (≤
0.1) slow down the learning speed of SGTB and necessitate
more iterations, but may achieve better generalization [6].
Algorithm 1 illustrates the details of SGTB with a learning
rate ν. Thus, SGTB has four different parameters that require
tuning: (1) tree size (J); (2) number of trees (M); (3) the
subsampling rate (q); and (4) the learning rate (ν).

Algorithm 1 Stochastic Treeboost with Learning Rate (ν)

F0 = argminβ
∑N
i=1 L(yi, β)

for m = 1 to M do
{yi,xi}N

′

1 = Subsample({yi,xi}N1 , rate = q)
for i = 1 to N ′ do
zi = − ∂

∂F (xi)
L(yi, F (xi))

∣∣∣
F=Fm−1

end for
{Rjm}J1 = RegressionTree({zi,xi}N

′

i)
for j = 1 to J do
γjm = argminγ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ)
end for
Fm(x) = Fm−1(x) + ν

∑J
j=1 γjm1(x ∈ Rjm)

end for

SGTB is widely available in many easy-to-use open-
source packages. Some implementations include General-
ized Boosted Models available in R [21], TreeNet by Salford
Systems [32], Gradient Boosting in Scikit-Learn [27], and
XGBoost implemented in C++ [13]. Although all packages
generally follow Algorithm 1, the implementation details
are slightly different. As an example, the splitting crite-
ria of the base learner varies across packages – General-
ized Boosted Models uses the minimum variance criterion,
Scikit-Learn uses the Friedman splitting criterion [5] by
default, and XGBoost uses a custom regularized splitting
criterion that is obtained by greedily minimizing the Taylor
approximation of the loss function [13]. The treatment of
missing values can also differ (e.g., XGBoost can handle
missing values by default, while Scikit-Learn does not sup-
port it). Thus, the performance can vary across packages
even when applied to the same dataset. No conclusive
evidence can be drawn that one implementation is the best
as it depends on the dataset.

3 PALOBOOST

The performance of SGTB is dependent on its hyperparam-
eters: tree depth, number of trees, subsampling rate, and
learning rate. Unfortunately, each hyperparameter is not
independent of the others and makes the tuning process
quite difficult. As an example, the ν-M trade-off [5], [6],
captures the relationship between the learning rate and
the number of trees. Lower learning rates (ν) may result
in better performance, but more trees (M) are usually re-
quired to achieve a similar level of performance. Thus, an
exhaustive grid search is often needed to find the optimal
hyperparameters.

Although the hyperparameter tuning process is rela-
tively straightforward, it can consume a substantial amount
of computational resources. We illustrate the tuning process
for tree depth and learning rate for a single-stage SGTB
model (i.e., M = 1). The dataset is partitioned into three
sets: training, validation, and test. The test set is strictly set
aside and used to estimate the generalization error. First, the
intercept term, F0, is fit using the training set. Next, for a
given learning rate and tree depth, we randomly subsample
data points from the training set and fit a tree on those
sampled gradients. The performance is then measured on
the validation set. This process is repeated multiple times

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 4

using varying learning rates and tree depths. The hyper-
parameters are then chosen based on the best validation
performance. The sample principle is applied for SGTBs
with multiple stages, where the number of trees (M) is also
varied. As a result, the whole cycle, while parallelizable, is
computationally expensive and requires considerable time.

Unfortunately, even the best-tuned hyperparameters
may not produce optimal results in real testing environ-
ments. Since the training and validation samples may not
reflect the “true” distribution, there is a real danger of over-
fitting. Thus, the hyperparameters chosen via the expensive
tuning process may not yield a robust, and generalizable
model. We have developed PaloBoost, a variant of SGTB
that is less sensitive to hyperparameters and provides robust
predictive performance. PaloBoost eliminates the need to
finely tune the learning rate and tree depth, and instead
estimates them during the training process.

PaloBoost mitigates overfitting via adaptive learning
rates3 and tree depths. The main idea centers around the
under-utilized out-of-bag (OOB) samples to tune these hy-
perparameters on the fly. We observed that both validation
and OOB samples are not seen during each tree building
stage. Thus, the OOB samples can be used to estimate the
learning rate and the tree depth at each stage. The same
principle can be applied at the next tree building stage even
though the OOB samples are different, as the learning rate
and tree depth are stage-specific parameters in PaloBoost.
Additionally, the stage-specific adaptive learning rates serve
as a guard against overfitting and can be used to determine
the optimal number of trees. Thus, PaloBoost does not need
to maintain a separate validation set, thereby increasing the
number of training samples at each stage that can further
combat tree overfitting.

3.1 Gradient-Aware Pruning
The maximum depth of the trees is a hyperparameter for
many SGTB implementations. While the tree at each stage
may not grow to the maximum depth for various reasons
(e.g., insufficient samples in the node, information gain is
not above a tolerance, etc.), the “intention” is to maintain the
maximum height. Consequently, the majority of the trees in
SGTB implementations will be grown to the maximum tree
depth and can result in overfitting. Although XGBoost has a
pre-pruning regularization hyperparameter [13], our empir-
ical studies showed little impact unless the default hyper-
parameter was adjusted substantially. Instead, we introduce
a gradient-aware pruning technique that utilizes the OOB
samples to achieve more flexible tree depths. Even though
maximum depth remains a hyperparameter in PaloBoost,
our model is less sensitive to the value and does not need to
be finely tuned.

Gradient-aware pruning has roots in the bottom-up
“reduced-error pruning“ found in decision tree literature. In
reduced-error pruning, the errors on OOB samples are com-
pared between children and parent nodes. If the child node
does not decrease the error, the node is pruned, thereby
reducing the complexity of the tree. However, boosting

3. The adaptive learning rates in PaloBoost are not based on the
gradients, which are commonly referred to as adaptive learning rates
in deep learning models.

poses two challenges: each tree is dependent on the previous
trees, and the node estimates are always multiplied by the
learning rate.

Conceptually, gradient-aware pruning removes gradient
estimates that do not generalize well to other samples. As
the tree depth increases, the number of samples per node
decreases. Smaller samples result in higher variances of
the estimated gradient, γ, which is also likely to increase
generalization errors4. Thus, to achieve more stable gradient
estimates, the regions with high variance should be merged.
In PaloBoost, after a tree is fitted to the subsampled gra-
dients, the tree is applied to the OOB samples. For each
disjoint region of the tree (Rj), the loss associated with
introducing a new leaf estimate is the gradient multiplied
by the learning rate:

Loss(Rj) =
Lj∑
i

Loss(yi, ŷi + νγj) (8)

Thus, if the leaf estimate does not reduce the loss on the
OOB samples, the node should be pruned. The gradient-
aware pruning process is summarized in Algorithm 2,
where the distribution in the Algorithm refers to the dis-
tribution of the noise applied to the target i.e. “gaussian“
and “bernoulli” correspond to regression and classification
tasks, respectively.

Algorithm 2 Gradient-Aware Pruning (GAP)

{(Rj , Rk)} = Find-Sibling-Pairs({Rj}Jj=1)
for each sibling pair in {(Rj , Rk)} do
{yi,xi}

Lj

1 = Out-of-Bag({yi,xi}N1 |Rj)
{yi,xi}Lk

1 = Out-of-Bag({yi,xi}N1 |Rk)
if
∑Lj

i Loss(yi, ŷi) <
∑Lj

i Loss(yi, ŷi + νmaxγj) then
do merge = True

else if
∑Lk

i Loss(yi, ŷi) <
∑Lk

i Loss(yi, ŷi + νmaxγk)
then

do merge = True
else

do merge = False
end if
if do merge then

Merge(Rj , Rk)
end if

end for

3.2 Adaptive Learning Rate

The learning rate, ν, controls the contribution of each new
stage. Empirically, the best strategy is to set ν to a very small
value to achieve favorable test errors at the cost of larger
values of M [8]. However, a single learning rate for every
tree may not be optimal, as some trees do not generalize
well. Instead, each stage should have a different learning
rate. Unfortunately, calculating optimal stage-specific learn-
ing rates through standard optimization techniques (i.e.,
line search) introduces substantial computational overhead.

4. Decision trees are often viewed as a high variance model. By
merging two siblings, there will be more samples and thereby reducing
the variance of the node estimate.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 5

Rather, PaloBoost takes advantage of the tree structure to
calculate optimal learning rates for each region efficiently.

The key observation is that we can decouple the esti-
mation of the learning rate if we introduce a region-specific
learning rate at each stage. Thus, each region Rj can calcu-
late the multiplicative factor that optimizes the OOB loss:

ν∗j = argmin
ν

Lj∑
i

Loss(yi, ŷi + νγj), (9)

where Lj represents the number of OOB samples in the leaf
of interest. The benefit of this approach is that closed-form
solutions exist for many loss functions. For example, the
learning rate for the negative binomial log-likelihood loss
function is:

ν∗j = argmin
ν

Lj∑
i

log(1 + exp(ŷi + νγj))− yi(ŷi + νγj)

(10)

= log

(∑Lj

i yi∑Lj

i (1− yi)exp(ŷi)

)
/γj (11)

Similarly, for the squared error loss function, the closed form
solution is:

ν∗j = argmin
ν

Lj∑
i

(yi − (ŷi + νγj))
2 (12)

=

∑Lj

i=1(yi − ŷi)
γjLj

(13)

PaloBoost also introduces a clipping function on the
estimated learning rate, to reduce the effect of small OOB
sample sizes. Without clipping, the estimated learning rates
can fluctuate in a wide range, sometimes exceeding the
value 1. Thus, to enforce stability and maintain similarity
with existing SGTB implementations, estimated learning
rates are capped with the maximum learning rate hyperpa-
rameter νmax. As a result, the effective region-specific learn-
ing rate ranges between zero and the maximum specified
learning rate. Algorithm 3 illustrates our adaptive learning
rate strategy.

Algorithm 3 Adaptive Learning Rate (ALR) with Out-of-
Bag Loss Reduction

{(Rj , Rk)} = Find-Sibling-Pairs({Rj}Jj=1)
for Rj in {Rj}Jj=1 do
{yi,xi}

Lj

1 = Out-of-Bag({yi,xi}N1 |Rj)
if distribution==“gaussian“ then

νj = clip
(∑Lj

i=1(yi−ŷi)
γjLj

, 0, νmax

)
else if distribution==“bernoulli“ then
νj = clip

(
log

(∑Lj
i yi∑Lj

i (1−yi) exp(ŷi)

)
/γj , 0, νmax

)
end if

end for

Gradient-aware pruning (GAP) serves as a preprocessing
step for the adaptive learning rate mechanism. Removing
the regions with higher variances of node estimates (γ)
provides two main benefits: (1) there are less adaptive rates
to estimate, and (2) robust node estimates will yield better

learning rates. Without GAP, PaloBoost still can dynamically
adjust learning rates with the ALR algorithm, but such
adjusted learning rates tend to exhibit more variance. In
short, we need both GAP and ALR for PaloBoost to produce
hyperparameter-robust models. Algorithm 4 provides the
details of PaloBoost. As the learning rate and tree depth
values are re-estimated during the training process, there is
less sensitivity to the maximum learning rate hyperparame-
ter νmax and tree depth.

Algorithm 4 PaloBoost

F0 = argminβ
∑N
i=1 L(yi, β)

for m = 1 to M do
{yi,xi}N

′

1 = Subsample({yi,xi}N1 , rate = q)
for i = 1 to N ′ do
zi = − ∂

∂F (xi)
L(yi, F (xi))

∣∣∣
F=Fm−1

end for
{Rjm}J1 = RegressionTree({zi,xi}N

′

i)
for j = 1 to J do
γjm = argminγ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ)
end for
{Rjm, γjm}J

′

1 = GAP({Rjm, γjm}J1 , νmax)
for j = 1 to J ′ do
νjm = ALR(γjm, νmax)

end for
Fm(x) = Fm−1(x) +

∑J
j=1 νjmγjm1(x ∈ Rjm)

end for

These two modifications to SGTB (GAP and ALR), can
make SGTB more robust to hyperparameters at a very small
price in its training time. To analyze its time complexity,
consider a dataset with n samples and m columns. For
fitting a decision tree with a maximum depth of d, it takes
O(nmd) in time. During the construction of each base tree
in PaloBoost, GAP and ALR re-visits every node of the
base tree at most once respectively. Thus, in the worst
case, GAP and ALR requires an additional scan of the data
samples, which is equivalent to O(2n). Therefore, each tree
in PaloBoost has the time complexity of O(nmd+ 2n). This
added cost becomes marginal in the presence of a large
number of features (i.e. m � 2), which is quite common
in many real-world data problems.

3.3 Modified Feature Importance

Feature importance in SGTB is calculated as the summation
of squared error improvements by the feature [33]. Although
the formula is adopted from RandomForest [26], the mea-
sure is purely based on heuristic arguments [5]. While the
feature importance has proven useful in many applications,
we notice that it ignores two important aspects of SGTB: the
leaf estimates and the coverage of the region (i.e., number
of samples in the node). As seen in the SGTB algorithm
(Algorithm 1), leaf estimates are recalibrated to minimize
the loss function. Moreover, the improvement from a feature
at a particular branch may yield leaves that have extremely
small coverage. Thus, the feature importance may not be an
accurate indication of coverage and impact.

These issues, along with the new adaptive learning rate,
led us to create a new feature importance formula. Instead

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 6

of a branch-centric perspective, PaloBoost introduces a leaf-
centric formula that accounts for leaf estimate, region cov-
erage, and region-specific learning rate. The importance of
a feature, fk is calculated as:

fk =
M∑
m=1

∑Jm
j=1 νjm|Rjm||γjm|1(fk ∈ Rulesjm)

Jm
∑J
j=1Rjm

(14)

where |Rjm| represent the coverage of the region Rjm, and
Rulesjm denotes the logical rules that define the regionRjm.
For example, if Rulesjm is of the form (x0 > 0.5 AND x1 <
1.0 AND x3 > −1), then 1(f1 ∈ Rulesjm) will be one as
x1 is in the rules. With our feature importance formula, if
a feature is used to define a region, we will multiply the
size of the region (|Rjm|) with the effective absolute node
estimate, νjm|γjm|. Therefore, if any of the three quantities
(coverage of the region, the leaf estimate, or the adaptive
learning rate) is small, the feature importance contribution
is minimal.

We found that this modified feature importance can
differentiate meaningful features from noisy features better
than the original feature importance using a simulated
data set. Some experimental results are available in [34].
However, in this paper, we did not include the results to
focus on our results regarding overfitting and predictive
performance.

4 EXPERIMENTAL RESULTS

PaloBoost is implemented in Python using the Bonsai Deci-
sion Tree framework [35], which allows easy manipulation
of decision trees. The Bonsai framework is mostly written
in Python with its core computation modules written in
Cython, to provide C-like performance. Our implementa-
tion of PaloBoost is made publicly available as an extension
to Bonsai5.

PaloBoost is evaluated on a variety of datasets (simu-
lated and real-world healthcare data) and compared against
state-of-the-art SGTB implementations. In this section, we
will analyze the following aspects of PaloBoost:

• How different are the learning rates and tree depths
at each individual stage?

• How sensitive is PaloBoost to hyperparameters?
• How does the predictive performance compare with

other SGTB implementations?

4.1 Datasets
Five different datasets are used to evaluate the SGTB vari-
ants, including PaloBoost. We use two simulated datasets
and three publicly available datasets, two from Physionet
2012 Challenge [36], and one from MIMIC-III [37]. Our
benchmark study consists of two regression tasks and three
classification tasks. Table 1 lists the datasets and their asso-
ciated characteristics. A brief overview of each dataset will
be provided in the context of their respective tasks.

All datasets are preprocessed in a uniform way: 1) no
imputation for missing values, 2) minimal outlier detection,
3) adding polynomial (or interaction) features for better

5. The implementation of PaloBoost can be found in https://
yubin-park.github.io/bonsai-dt/ as one of the Bonsai templates.

predictive performance. While XGBoost and our SGTB im-
plementations (including PaloBoost) can naturally handle
missing values, we omit Scikit-Learn for datasets with miss-
ing values as it does not support missing values. We made
all the scripts used in the experiments publicly available. For
more details, please see https://github.com/yubin-park/
bonsai-dt/tree/master/research.

4.2 Baselines

We compare PaloBoost with three other baseline models as
follows:

• Scikit-Learn [27], the de-facto machine learning li-
brary in Python that has been widely adopted.

• XGBoost [13], the battle-tested library that has won
many data science challenges.

• Bonsai-SGTB, an SGTB implementation using the
Bonsai framework.

While there are many newly developed SGTB implementa-
tions (e.g., LightGBM, CatBoost), they are not included in
our study for several reasons. First, we observed that the
overfitting behavior of these packages is similar to Scikit-
Learn and XGBoost as they focus primarily on implemen-
tation details and feature engineering. CatBoost focuses on
more efficiently encoding categorical variables using Target-
based Statistics and permutation techniques [40], [41]. Light-
GBM primarily focuses on training speed using less memory
in distributed settings [42]. Secondly, our objective is to
characterize the behaviors of the two regularization tech-
niques in PaloBoost, rather than to claim that PaloBoost
outperforms other SGTB implementations. We note that
our regularization techniques, Gradient-aware Pruning and
Adaptive Learning Rate, can be added to any existing SGTB
implementations. Therefore, the three baseline models serve
as suitable representations for other implementations.

4.3 Setup & Evaluation Metrics

All datasets are split with an 80/20 train-test ratio (i.e., 80%
for training and 20% for test). For each SGTB implementa-
tion, we tested three different learning rates that spanned
the spectrum for ν (1.0, 0.5, and 0.1), and three different
tree depths of 3, 5 and 7. Unless otherwise specified, de-
fault hyperparameter settings were used for the benchmark
models. We constructed 10 sets of random training-test
splits, and each model was trained on 80% of the data and
then applied to the test set to measure predictive perfor-
mance. Thus, for each dataset, we have 10 runs for every
9 different hyperparameter settings (3 learning rates × 3
tree depths). We evaluated the models using the coefficient
of determination (R2) and the Area Under the Receiver
Operating Characteristic Curve (AUROC) for the regression
and classification tasks, respectively.

4.4 Simulated Datasets

4.4.1 Friedman Regression Dataset

Description. The simulated dataset contains 10,000 samples
and is adopted from Friedman [28], [43], to introduce noisy

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 7

TABLE 1
Benchmark Datasets. For regression tasks, we list the standard deviation of the target variable, whereas the class ratios for classification tasks.

The number of features shows the number after preprocessing e.g. removing small variance features, adding polynomial features.
Source Dataset Task Missing Data Target Stats # Samples # Features

Simulation Friedman [28] Regression None σ(y) = 6.953 10,000 55
Physionet 2012 [36] Length of Stay in ICU [38] Regression Yes σ(y) = 12.20 3,940 1,378
Simulation Hastie [8] Classification None µ(y) = 0.50 10,000 66
Physionet 2012 [36] Mortality in ICU [38] Classification Yes µ(y) = 0.14 3,940 1,378
MIMIC-III [37] Cardiac Arrest 6Hr [39] Classification Yes µ(y) = 0.27 1,081 78

Fig. 2. [Friedman] Predictive performance over boosting iterations. Ex-
cept for PaloBoost, the best performances are localized in a narrow
region of hyperparameters. On the other hand, PaloBoost can maintain
its near-best performances over many different hyperparameter settings.

Fig. 3. [Friedman] Performance differences between the best and last
boosting iterations. PaloBoost shows minimal performance differences
over different hyperparameter configurations. This implies that Palo-
Boost can maintain its best performance even with many boosting
iterations.

features (i.e., features with zero importance). The formula
for the dataset is as follows:

y = 10 sin(πx0x1) + 20(x2 − 0.5)2 + 10x3 + 5x4 + 5ε
(15)

ε ∼ Normal(0, 1) (16)

where xis are uniformly distributed on the interval [0,1]. For
each sample, Gaussian noise ε with a standard deviation of
five, is added. Note that only 5 features among 10 features
(x0 − x4) are actually used to generate the target (y) in
Equation (15).

Predictive Performance. Figure 2 shows the coefficient of
determination (R2) over boosting iterations for the three
different learning rates (in rows) and three tree depths (in

columns). The curves are drawn by averaging the curves
from the 10 random train-test runs. The horizontal axis on
each cell represents boosting iterations, while the vertical
axis indicates the coefficient of determination (R2). The
higher the R2 values, the more accurate the predictions are.
As can be seen, PaloBoost exhibits the best and most stable
predictive performance for all hyperparameter configura-
tions, more noticeably for the cases when high learning
rates and deeper trees are used. While the other SGTB
implementations show significant degradation in predictive
performance as they iterate, PaloBoost displays a graceful
drop of predictive performance even with high learning
rates. Even for a small learning rate of 0.1, the overfitting be-
havior of SGTB becomes apparent after 50 iterations for tree
depths of 5 and 7. Moreover, the predictive performance of
PaloBoost varies considerably less across the three different
learning rates, illustrating better robustness to the hyperpa-
rameter setting (νmax). In the figure, we also included the
performance of PaloBoost without GAP (dotted black line).
We can observe that the effect of GAP is more noticeable in
higher depth base trees, such as depth 5 and 7. GAP acts
as a preprocessing step for ALR, and improves the overall
performance across different hyperparameter settings.

Figure 3 shows the performance differences between the
best and last boosting iterations. From left to right, each cell
represents PaloBoost, Bonsai-SGTB, XGBoost, and Scikit-
Learn models, respectively. In each cell, boxplots show
the performance differences from different hyperparameter
configurations. The smaller the performance differences, the
less performance degradation from their best performances.
As can be seen, PaloBoost shows minimal performance dif-
ferences over different hyperparameter configurations. This
suggests that PaloBoost can maintain its best performance
even with many boosting iterations, while the other SGTB
implementations overfit as they added more base trees.

Average Learning Rate and Pruning Rate. The gradual
decline of predictive performance in PaloBoost can be better
understood by analyzing the pruning rate and average
learning rate at each stage. Figure 4 and 5 display the aver-
age learning rates and the pruning rates over the same iter-
ations, respectively. On top of the original data in gray lines,
we overlaid LOESS (locally estimated scatterplot smooth-
ing) curves to visualize the overall trend using ggplot2 in R.
From the figures, we can see a high variance in the learning
rate for each stage and that it is often below the specified
maximum rate. We can also observe that as the number of
stages increases, the learning rates are adaptively adjusting
to smaller values. Interestingly, some of the average learning
rates at later iterations are near zero, meaning that the
base trees hardly contributed to predictions. In addition, the
pruning rate increases to yield lower variance trees. Thus,

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 8

Fig. 4. [Friedman] The average learning rates over boosting iterations.
Note that some of the average learning rates are near zero.

Fig. 5. [Friedman] The average pruning rates over boosting iterations.
Base trees get pruned more as PaloBoost iteresates more.

these two mechanisms guard against overfitting even when
adding more boosting iterations i.e. more complex models.

Feature Importance. Since the dataset is simulated, the
true feature importance is known, with only 5 features
(x0−x4) used to generate the target. For the purpose of this
experiment, we did not use any polynomial features as poly-
nomial features mix up true and noisy features. Therefore,
we have 10 variables instead of 55 variables for this specific
experiment. We compared the feature importances from the
four different trained models with 200 iterations (M = 200)
and a learning rate of 0.5 (νmax = 0.1). PaloBoost and SGTB-
Bonsai use the proposed feature importance formula (see
Section 3.3), while XGBoost and Scikit-Learn use the stan-
dard feature importance formula (summation of the squared
error improvements per feature). Figure 6 shows the feature
importances from all four SGTB models6. PaloBoost clearly
identifies the noisy features (x5 − x9), while XGBoost and
Scikit-Learn estimate similar importances between the rele-
vant and noisy features. We can also observe that the feature
importances of SGTB-Bonsai are somewhat better than the
other two SGTB algorithms. As SGTB-Bonsai is the same
as Scikit-Learn and XGBoost in nature, the result can be
interpreted as the effect of the new importance formula.
Thus, the PaloBoost’s feature importances are the results of
both the new formula and its regularization techniques.

6. The results are similar for M = 50 but less dramatic.

Fig. 6. The feature importances after 200 iterations. Only the first five
features, x0 to x4, are used to generate the target.

Fig. 7. [Hastie] Performance differences between the best and last
boosting iterations. PaloBoost maintains its near-best performance even
after reaching to its best performance.

4.4.2 Hastie Classification Dataset
This simulated dataset is derived from Example 10.2 in [8]:

Y = 1 if
10∑
j=1

X2
j > χ2

10(0.5), otherwise -1 (17)

As can be seen, the original model is fairly simple to fit,
and it is difficult to observe overfitting behaviors. For the
purpose of our experiment, we add an additional step to
make the dataset more difficult to train and easier to overfit
as follows:

Y ′ = 1 if Z × Y < θ, otherwise 0 (18)

where Y ′ is the new target variable, θ = 0.2, and Z ∼
Normal(0, 1) in this experiment. In other words, we added
a multiplicative noise variable, Z, and flipped the class label
with a threshold (θ).

Figure 7 shows the performance differences between the
best and last boosting iterations. Similar to the results in the
Friedman data experiment (Figure 3), PaloBoost shows min-
imal performance differences over various hyperparameter
settings.

Figure 8 shows the predictive performance over boost-
ing iterations. From the figure, we can easily observe that
the other SGTB implementations are overfitting as they
iterate more. It is noteworthy to mention the case where
PaloBoost did not perform as good as the other algorithms
i.e. tree depth=3 and learning rate=0.1. As can be seen,
PaloBoost has not yet converged to the best performance,
while other algorithms have seemingly approached the
maximum performances. This is because the OOB regu-
larization techniques can make PaloBoost converge slower
than the others, since the “effective” learning rates and tree
depth are often less than the specified values in the OOB
regularization schemes. When a predictive task does not
suffer from overfitting, we have observed that PaloBoost
sometimes need more iterations to converge than the other
SGTB implementations. The advantages of PaloBoost are
better highlighted when we need to model a very noisy
and overfit-prone dataset, hence healthcare datasets are the
perfect applications of PaloBoost.

4.5 Real-World Healthcare Datasets
Length of Stay in ICU. Our first real-world healthcare
dataset is from the Physionet 2012 challenge [36]. The
dataset contains 4000 intensive care unit (ICU) patients and
their physiological measurements during the first 48 hours
after their ICU admissions. We chose this dataset because

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 9

Fig. 8. [Hastie] Predictive performance over boosting iterations. Palo-
Boost’s performance curves are fairly consistent regardless of hyperpa-
rameter settings.

Fig. 9. [Length of Stay] Predictive performance over boosting iterations
from the Length of Stay Prediction Task.

it is publicly available and readily accessible for replication.
To minimize the presence of missing values, we pick the
seven most commonly available measurements: noninva-
sive diastolic arterial blood pressure, temperature, heart
rate, Glasgow Coma Score, serum glucose, white blood cell
count and urine output. The feature matrix was constructed
using summary statistics (average, minimum, maximum,
first, and last measurements) for each of the measurements
to yield a total of 35 features. 15.3% of the patients had
at least one missing value and 60 patients who had no
observations for any of the 7 measurements are not included
in our study. See [38] for more details on data preparation.

The task for this experiment is to predict the total length
of stay. This is extremely important for the hospital given the
high equipment costs and the large percentage of medical
resources used by ICU patients. Accurate predictions on

Fig. 10. [Mortality] Predictive performance over boosting iterations from
the Mortality Prediction Task.

when a bed in the ICU will be available can lead to consider-
able resource and management optimization. Furthermore,
such predictions can also help physicians intervene in a
more timely manner and design better care plans. This can
lead to a rise in patient satisfaction, ultimately resulting in a
higher reputation and credibility for the hospital as well.

Figure 9 shows the results of predicting the length of
stay. The rows show different learning rates (0.1, 0.5, and
1.0 from left to right), and the columns represent different
tree depths (3, 4, and 5). The horizontal axis on each cell
is boosting iterations, while the vertical axis represents the
coefficient of determination (R2). The higher the R2 values,
the more accurate the predictions are. As can be seen, for
all settings, PaloBoost substantially outperforms the other
models even on this extremely difficult problem. The other
SGTB implementations overfit so much to the training
data and hardly produce better predictions than predicting
the mean value (R2 ∼ 0). Moreover, PaloBoost achieves
consistent results across a range of hyperparameters. This
is noteworthy when compared to the drastic differences
exhibited by the other two baseline models.

Mortality in ICU. Using the same dataset constructed
from the previous experiment, we predict in-hospital mor-
tality of the patients (the original task in the Physionet
2012 challenge). This task also has a substantial impact on
resource and management optimization. Hospital staffs can
assign highly trained and valuable specialists to specifically
cater to high-risk patients’ needs, thereby increasing the
chance of survival of patients.

Figure 10 shows the predictive performance from the
original data (i.e. without label noise), measured in the
Area Under the Receiver Operating Characteristics Curve
(AUROC). As can be seen, PaloBoost shows consistent and
robust performance over different hyperparameter configu-
rations. Interestingly, we did not observe much of drastic
performance degradation from other algorithms, though
their maximum performances were still below those of
PaloBoost. From an overfitting perspective, this suggests the
mortality prediction task is an easier problem than predict-

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 10

Fig. 11. [Mortality with Label Noise] Predictive performance over boost-
ing iterations from the Mortality Prediction Task with Label Noise. The
label noise make the other SGTB implementations easily overfit, while
PaloBoost maintains its best performance without much of overfitting.

ing the length of stay. In fact, overfitting in classification
tasks is less prominent than in regression tasks, due to the
overfit-resistance nature of the loss function [44].

To better highlight the advantages of PaloBoost, we
designed an additional experiment for the mortality task.
In healthcare, many data sources are generated by humans,
which can lead to various record errors. Such record errors
can create both noisy features and noisy labels, making
models overfit to such noisy features and labels. In this
experiment, we assume random 20% of the labels in the
training data have wrong labels, while the test labels are
all correct. Figure 11 shows the predictive performance
from the noisy label data. We can observe that the AUCs
are less than the ones from the original data due to the
noisy labels. Moreover, the overfitting behaviors of the other
SGTB implementations are more noticeable than the results
from the original data. It is noteworthy that, even with this
high-level of label noise, PaloBoost shows very consistent
predictive performance without much of overfitting.

Cardiac Arrest. Predicting and preventing cardiac arrest
is one of the biggest challenges of contemporary cardiology.
With accurate predictions of cardiac arrest, the emergency
response team can effectively treat patients and increase
the chance of survival of patients. For this experiment, we
use a dataset from MIMIC-III (Multiparameter Intelligent
Monitoring in Intensive Care) database [37]. ICU patients
between the ages of 50-75 at the time of admission were
extracted. Among those, we focus on the following sets of
patients:

1) Cardiac arrest patients who had either asystole or
ventricular tachycardia event. The index time for
these patients is the time of the first event that is
recorded in the event table.

2) Non-cardiac arrest patients who did not experience
any cardiac arrest event. The index time for these
patients is randomly sampled from their hospital
stay.

Fig. 12. [Cardiac Arrest] Predictive performance over boosting iterations
from the Cardiac Arrest Prediction Task.

Fig. 13. [Cardiac Arrest with Label Noise] Predictive performance over
boosting iterations from the Cardiac Arrest Prediction Task with Label
Noise.

We identified 1081 patients that meet our criteria above.
The features are constructed from six commonly observed
clinical measurements, one derived measurement prior to
the index time, and three basic demographic variables for
total 11 variables. The measurements include temperature,
peripheral capillary oxygen saturation, heart rate, respira-
tory rate, diastolic blood pressure, systolic blood pressure,
and pulse pressure index (the difference between systolic
and diastolic blood pressure over the systolic pressure).
Our target variable is whether the patient will experience
cardiac arrest in the next 6 hours using measurements from
the previous 24 hours. For more information about the
construction of the dataset, please refer to [39].

Figure 12 illustrates the results of predicting the cardiac
arrest of patients. As can be seen, PaloBoost consistently out-
performs the other algorithms for all hyperparameter set-
tings. Furthermore, PaloBoost demonstrates stable predic-

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 11

Fig. 14. Predictive Performance of the best-performing hyperparameter
configuration for each model and dataset.

tive performance regardless of different boosting iterations
and learning rates, while other implementations show some
level of performance degradation for certain configurations.

We also present the results with noisy labels, shown in
Figure 13. We randomly flipped 20% of the labels in the
training data, and trained PaloBoost and the benchmark
algorithms. The results are consistent with the other ex-
periments. PaloBoost shows stable predictive performances
over different hyperparameter settings and even with many
boosting iterations without overfitting.

PaloBoost is originally developed to make a new SGTB
algorithm that is less sensitive to hyperparameter configura-
tions. However, as a pleasant side-effect of such an attempt,
we find PaloBoost can improve predictive performance for
noisy label datasets. Figure 14 shows the predictive per-
formance of the best-performing hyperparameter configu-
ration for each model and dataset. As can be seen, the
predictive performance of PaloBoost is comparable to the
existing SGTB algorithms. Noticeably, for those two noisy
label datasets – “ca6hr noised” and “mort noised”, Palo-
Boost improved the predictive performance by meaningful
margins. This is because PaloBoost can select statistically
meaningful nodes and learning rates using GAP and ALR,
removing spurious patterns in training data.

5 DISCUSSIONS

We introduced PaloBoost, an extension of SGTB, to miti-
gate overfitting in boosting applications for healthcare data.
PaloBoost uses two regularization techniques: gradient-
aware pruning and adaptive learning rate estimation.
Rather than viewing OOB samples as a third-party observer
for tracking errors and feature importances, PaloBoost con-
siders these samples as the second batch of training sam-
ples. Based on this new perspective of the OOB samples,
PaloBoost dynamically adjusts the tree depths and learning
rates at each stage to minimize overfitting by knowing when
it needs to “slow down”. We showed that our two regular-
ization mechanisms adaptively adjusts to yield lower vari-
ance trees and optimal region-specific learning rates. The
empirical results demonstrate considerably less sensitivity
to the hyperparameter settings – different learning rates and
the number of iterations yield comparable predictive perfor-
mance. While our empirical results suggest that both GAP
and ALR are needed to produce hyperparameter-robust

models, deeper studies are required to better understand
how these two regularizations affect the performance.

An interesting observation drawn from the experiments
was the presence of trees with negligible (ν ∼ 0) learning
rates in PaloBoost. Given that these trees have minimal
impact on the overall performance, they can be potentially
removed. This should yield a more compact-sized tree
boosting model while offering similar predictive perfor-
mance. Perhaps this can be further extended to encompass
a two-steps-forward-one-step-back strategy. By integrating
tree removal directly into the algorithm, a more cohesive
and compact model can be learned without introducing
significant computational overhead. These intriguing ideas
are left for future work.

Our extensive experiments confirm that PaloBoost pro-
duces robust predictive performance over various real-
world healthcare data. It is because healthcare data often
exhibit 1) noisy labels, 2) complex data types, 3) missing
data, 4) small sample sizes, and 5) a large number of
features. Although the experiments presented in this work
are limited to healthcare data, extensive studies with other
datasets also demonstrated similar results [34].

However, if a dataset has accurate labels and has easy-to-
predict target variables, PaloBoost’s adaptive learning and
pruning may slow down its learning speed. In our exper-
iments with non-healthcare datasets [34], we noticed that
PaloBoost sometimes requires more iterations to achieve
their best performance. This pattern was more obvious
when other SGTB algorithms achieve their best perfor-
mances easily and do not show overfitting behaviors even
with many iterations. Thus, we think that PaloBoost can be
best used when traditional SGTB algorithms failed to work
well and show substantial overfitting behaviors.

PaloBoost is developed to make SGTB more robust and
stable when applying boosting techniques for healthcare
data. While significantly less sensitive to the hyperparame-
ters compared to the other implementations, PaloBoost still
requires similar hyperparameters (“max” learning rate and
tree depth). We note that the ideas presented in this paper
are the initial steps toward automating the tuning of SGTB
models. Not only can PaloBoost save computation resources
and researchers’ time, but it can also help democratize SGTB
to a wider audience.

REFERENCES

[1] C. H. Lee and H.-J. Yoon, “Medical big data: promise and chal-
lenges,” Kidney Res Clin Pract, vol. 36, no. 1, pp. 3 – 11, 2017.

[2] L. Nie, M. Wang, L. Zhang, S. Yan, B. Zhang, and T.-S. Chua,
“Disease inference from health-related questions via sparse deep
learning,” IEEE Transactions on Knowledge and Data Engineering,
vol. 27, no. 8, pp. 2107–2119, Aug 2015.

[3] L. Nie, Y.-L. Zhao, M. Akbari, J. Shen, and T.-S. Chua, “Bridging
the vocabulary gap between health seekers and healthcare knowl-
edge,” IEEE Transactions on Knowledge and Data Engineering, vol. 27,
no. 2, pp. 396–409, June 2015.

[4] L. Nie, L. Zhang, Y. Yang, M. Wang, R. Hong, and T.-S. Chua,
“Beyond doctors: Future health prediction from multimedia
and multimodal observations,” in Proceedings of the 23rd ACM
International Conference on Multimedia, ser. MM ’15. New
York, NY, USA: ACM, 2015, pp. 591–600. [Online]. Available:
http://doi.acm.org/10.1145/2733373.2806217

[5] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189–
1232, Oct. 2001.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2959988, IEEE
Transactions on Knowledge and Data Engineering

TKDE 12

[6] ——, “Stochastic gradient boosting,” Computational Statistics &
Data Analysis, vol. 38, no. 4, pp. 367–378, Feb. 2002.

[7] L. Breiman, Classification and regression trees. Routledge, 2017.
[8] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical

learning: data mining, inference, and prediction, 2nd ed. Springer,
2009.

[9] K. J. Barriga, R. F. Hamman, S. Hoag, J. A. Marshall, and S. M.
Shetterly, “Population screening for glucose intolerant subjects
using decision tree analyses,” Diabetes Research and Clinical Practice,
vol. 34, pp. S17–S29, 1996.

[10] K. E. Goodman, J. Lessler, S. E. Cosgrove, A. D. Harris, E. Lauten-
bach, J. H. Han, A. M. Milstone, C. J. Massey, and P. D. Tamma,
“A clinical decision tree to predict whether a bacteremic patient
is infected with an extended-spectrum β-lactamase–producing
organism,” Clinical Infectious Diseases, vol. 63, no. 7, pp. 896–903,
2016.

[11] R. Bekkerman, “The present and the future of the kdd
cup competition,” https://www.kdnuggets.com/2015/08/
kdd-cup-present-future.html, August 2015.

[12] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah,
R. Herbrich, S. Bowers, and J. Q. Candela, “Practical lessons
from predicting clicks on ads at facebook,” in Proceedings of the
Eighth International Workshop on Data Mining for Online Advertising,
August 2014, pp. 1–9.

[13] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting
system,” in Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, 2016, pp. 785–794.

[14] C. J. Burges, “From ranknet to lambdarank
to lambdamart: An overview,” Microsoft Cor-
poration, Tech. Rep., 2010. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/
from-ranknet-to-lambdarank-to-lambdamart-an-overview/

[15] P. Li, C. J. Burges, and Q. Wu, “Learning to rank using classifi-
cation and gradient boosting,” in Advances in Neural Information
Processing Systems, January 2008.

[16] H. Zhang and V. M. Patel, “Densely connected pyramid dehazing
network,” in CVPR, June 2018, pp. 3194–3203.

[17] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “Fitnets: Hints for thin deep nets,” https://arxiv.org/
abs/1412.6550, March 2015.

[18] E. Barshan and P. Fieguth, “Stage-wise training: An improved
feature learning strategy for deep models,” in Proc. of the 1st Int.
Workshop on Feature Extraction: Modern Questions and Challenges at
NIPS 2015, 2015.

[19] B. Efron and G. Gong, “A leisurely look at the bootstrap, the
jackknife, and cross-validation,” The American Statistician, vol. 37,
no. 1, pp. 36–48, February 1983.

[20] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Proc. of the 14th Int. Joint Conf.
on Artificial intelligence, vol. 2, August 1995, pp. 1137–1143.

[21] G. Ridgeway, “Generalized boosted models: A guide to the
gbm package,” https://cran.r-project.org/web/packages/gbm/
vignettes/gbm.pdf, 2012.

[22] W. Jiang, “On weak base hypotheses and their implications for
boosting regression and classification,” The Annals of Statistics,
vol. 30, no. 1, pp. 51–73, November 2002.

[23] M. Hardt and A. Blum, “The ladder: A reliable leaderboard for
machine learning competitions,” in Proceedings of the 32nd Interna-
tional Conference on Machine Learning, 2015.

[24] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do cifar-10 clas-
sifiers generalize to cifar-10?” https://arxiv.org/abs/1806.00451,
June 2018.

[25] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

[26] ——, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,
2001.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[28] J. H. Friedman, “Multivariate adaptive regression splines,” The
Annals of Statistics, vol. 19, no. 1, pp. 1–67, March 1991.

[29] L. Breiman, “Arcing classifier (with discussion and a rejoinder by
the author),” The Annals of Statistics, vol. 26, no. 3, pp. 801–849,
Jun. 1998.

[30] H. Schwenk and Y. Bengio, “Boosting neural networks,” Neural
Computation, vol. 12, no. 8, pp. 1869–1887, August 2000.

[31] Y. Freund and R. E. Schapire, “A short introduction to boosting,”
Journal of Japanese Society for Artificial Intelligence, vol. 14, no. 5, pp.
771–780, September 1999.

[32] S. S. a Minitab company, “Treenet - gradient boosting,” https://
www.salford-systems.com/products/treenet, 2018.

[33] J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to
boosted regression trees,” Journal of Animal Ecology, vol. 77, no. 4,
pp. 802–813, July 2008.

[34] Y. Park and J. C. Ho, “Paloboost: An overfitting-robust treeboost
with out-of-bag sample regularization techniques,” https://arxiv.
org/abs/1807.08383, July 2018.

[35] Y. Park, “Bonsai-dt - programmable decision tree framework,”
https://yubin-park.github.io/bonsai-dt/.

[36] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff,
P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng,
and H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex physiologic
signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000.

[37] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng,
M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark,
“Mimic-iii, a freely accessible critical care database,” Scientific data,
vol. 3, p. 160035, 2016.

[38] M. Sotoodeh and J. C. Ho, “Improving length of stay prediction
using a hidden markov model,” in AMIA Joint Summits on Trans-
lational Science, 2019.

[39] J. C. Ho and Y. Park, “Learning from different perspectives: Robust
cardiac arrest prediction via temporal transfer learning,” in Proc.
of the 39th Annual Int. Conf. of the IEEE Engineering in Medicine and
Biology Society, 2017.

[40] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and
A. Gulin, “CatBoost: unbiased boosting with categorical features,”
arXiv:1706.09516 [cs.LG], Jun. 2017.

[41] A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost: gradient
boosting with categorical features support,” Workshop on ML Sys-
tems at NIPS 2017, 2017.

[42] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “LightGBM: A highly efficient gradient boosting decision
tree,” in Advances in Neural Information Processing Systems 30, 2017,
pp. 3146–3154.

[43] J. H. Friedman, E. Grosse, and W. Stuetzle, “Multidimensional
additive spline approximation,” SIAM Journal on Scientific and
Statistical Computing, vol. 4, no. 2, pp. 291–301, 1983.

[44] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic re-
gression: A statistical view of boosting: Rejoinder,” The Annals of
Statistics, vol. 28, no. 2, pp. 400–407, April 2000.

Yubin Park is Principal at Bonsai Research,
LLC. He received his Ph.D. and M.S.E in elec-
trical and computer engineering from the Uni-
versity of Texas at Austin and B.S. from KAIST
in 2014, 2011 and 2008 respectively. He co-
founded a healthcare analytics start-up (Accor-
dion Health), and served the CEO and CTO roles
until the company was sold to Evolent Health,
Inc.

Joyce C. Ho is an assistant professor in the
Computer Science Department at Emory Uni-
versity. Her research is in data mining and ma-
chine learning, focusing on healthcare applica-
tions. She received her Ph.D. from the Uni-
versity of Texas at Austin, M.S. and B.S. from
Massachusetts Institute of Technology. She co-
founded a successful healthcare analytics com-
pany (Accordion Health) and previously worked
at Lawrence Livermore National Laboratory.

