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ABSTRACT
Real-world predictive models in healthcare should be evaluated in
terms of discrimination, the ability to differentiate between high
and low risk events, and calibration, or the accuracy of the risk
estimates. Unfortunately, calibration is often neglected and only
discrimination is analyzed. Calibration is crucial for personalized
medicine as they play an increasing role in the decision making
process. Since random forest is a popular model for many healthcare
applications, we propose CaliForest, a new calibrated random forest.
Unlike existing calibration methodologies, CaliForest utilizes the
out-of-bag samples to avoid the explicit construction of a calibration
set. We evaluated CaliForest on two risk prediction tasks obtained
from the publicly-available MIMIC-III database. Evaluation on these
binary prediction tasks demonstrates that CaliForest can achieve
the same discriminative power as random forest while obtaining
a better-calibrated model evaluated across six different metrics.
CaliForest is published on the standard Python software repository
and the code is openly available on Github.
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1 INTRODUCTION
Machine learning-based predictive algorithms have been touted as
the new frontier of healthcare [5, 19]. Random forest has emerged
as a popular methodology due to its ability to work with a mixture
of data types, handle missing data, and achieve high predictive per-
formance [2, 4, 12, 17, 27, 32, 33]. Yet, these models are often only
evaluated on discrimination, or how well the model differentiates
between high risk and low risk of the event, and fail to provide any
analysis of calibration. Calibration, the accuracy of the actual risk
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estimates, is also essential to assess the usefulness of the model
[1, 28]. An accurate probability estimate is crucial for clinical deci-
sion making. For example, if a predictive model predicts a woman
has a 45% chance of breast cancer, the clinician may refer her for
chemo-prevention trials [10]. Well-calibrated predictive models are
imperative for personalized medicine as they play an increasing
role in both clinical care and translational research [14].

Unfortunately, a highly discriminative classifier (e.g., a classi-
fier with a large area under the receiver operating characteristic
(ROC) curve, or AUROC) may not be well-calibrated. Several ma-
chine learning approaches such as Naive Bayes, decision trees, and
artificial neural networks have been shown to have exhibit poor
calibration [3, 8, 31]. In fact, logistic regression model, a widely
adopted predictive model in healthcare, may not be well-calibrated
[14]. As a result, various techniques have been proposed to cali-
brate existing predictive models [14, 21, 31] or directly incorporate
calibration in the model itself [6, 13]. Under the former approach,
some of the original training examples must be set aside for the
purpose of calibration. Unfortunately, in the presence of a limited
number of samples (a common scenario in healthcare data), this can
negatively impact the discriminative power of the predictive model
in addition to the calibration function itself. Instead, an alternative
approach is to extend the machine learning model itself to avoid
the construction of the calibration dataset. It was observed that
models using bootstrap replicates, such as the random forest, can
utilize the out-of-bag samples, or the samples not included from the
bootstrap process [6]. However, the experimental results did not
demonstrate considerable improvement compared to the separate
calibration dataset.

Therefore, we propose CaliForest, a calibrated random forest
that utilizes the variance of the individual out-of-bag predictions,
to learn a robust calibration function. Instead of naively using the
out-of-bag predictions which may only reflect one-third of the trees
in the random forest, CaliForest utilizes the individual out-of-bag
sample prediction from each tree. The key idea is to calculate the
variance associated with each sample to estimate the certainty of
the out-of-bag prediction. At a high level, if the individual sample
predictions have a wide range or only appear in a few trees, then
the model should be less certain about that particular sample. Thus,
the variance can be utilized in the form of sample weights to learn
a robust calibration function.

We compared the performance of CaliForest to random forest
with a held-out calibration set and the standard random forest
without any calibration. The calibration and discrimination of the
models are evaluated on two risk prediction tasks obtained from
the publicly-available MIMIC-III database. The empirical results
on these binary prediction tasks demonstrate that CaliForest can
improve calibration, evaluated across six different metrics, without
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sacrificing the discriminative power of random forest. We also
published CaliForest as a Python package and the code is openly
available on Github. This will enable practitioners and software
developers to develop practical predictive models that achieve high
discrimination and are well-calibrated.

2 BACKGROUND
In this section, we first describe the common published calibration
metrics before reviewing existing calibration methods.

2.1 Calibration Metrics
Unlike AUROC (or the c-statistic) which has been chosen as the de
facto measure of discrimination in the literature, there is no single
reliable measure of calibration. Assuming a binary (0/1) risk predic-
tion task and a model that produces an estimated risk probability
𝑦𝑖 for each subject 𝑖 , the commonly published calibration metrics
include the following:

• Brier score: The expectation of the squared losses between
the actual outcome 𝑦𝑖 and the prediction 𝑦𝑖 . This score has
been shown to measure both discrimination and calibration.
A perfect calibration model achieves a Brier score of 0, a
random model with a 50% prevalence rate achieves 0.25, and
a perfect misforecaster achieves a score of 1.

• Scaled Brier score [26]: A standardized, prevalent-independent
version of the Brier score with the range between 0 and 1.
The score accounts for the mean prevalence of the event
by dividing the Brier score by the “maximum" Brier score
achieved by simply predicting the prevalence of the event.
A perfect model achieves a scaled Brier score of 1.

• Hosmer-Lemeshow test statistic [11]: A statistical goodness-
of-fit test to evaluate the difference between the predicted
and observed event rates. The Hosmer-Lemeshow C test
statistic is defined with an equal number of predicted scores
divided into 10 groups. A p-value of 1 indicates the model is
well-calibrated.

• Spiegelhalter [24]: A statistical test to evaluate whether the
Brier score is extreme. Spiegelhalter [24] observed that the
expectation and variance of the Brier score could be cal-
culated under the null hypothesis that the true unknown
probability of the event was equivalent to the estimated
probability. Thus, one could determine whether it was dif-
ferent from the observed prevalence. A p-value of 1 denotes
a well-calibrated model.

• Reliability-in-the-small [30]: The error in the average pre-
diction associated with each group compared to the average
prevalence within the group. The standard calculation di-
vides the predicted scores equally into 10 groups. A value of
0 means perfect calibration.

• Reliability-in-the-large [30]: The difference between themean
prediction and the observed fraction of positive outcomes.
This is also referred to as the bias of the model. A value of 0
means the model was able to reproduce the sample means.

The formulas for the six different scores and test statistics are
summarized in Table 1. Note that for both Hosmer-Lemeshow and
Spiegelhalter, the formulas are for the test statistics that are then

used to calculate the corresponding p-value using the chi-squared
and normal distribution, respectively.

The six commonly published metrics have been shown to have
limitations. For example, the Brier score may be lower for a model
that is less well-calibrated than another [23]. Similarly, Hosmer-
Lemeshow [25] can fail to detect overfitting and is only applicable
to small samples. Therefore, a recent study of calibration metrics
suggests that model calibration should be assessed using multiple
metrics simultaneously [28].

2.2 Calibration Methods
Several techniques have been proposed to improve the calibration
of existing machine learning models. Existing techniques normally
utilize a separate data set, the calibration set, to learn an appropri-
ate calibration function. The calibration function then produces
improved probability estimates.

2.2.1 Platt scaling. Platt proposed the use of the sigmoid function
to transform the classifier’s outputs into posterior probabilities [21].
In other words, a logistic regression model is fit to the classifier’s
scores on the calibration set. Additional regularization is often
applied to the target values to avoid a predicted probability of
exactly 0 or 1. It has been noted that this method may not produce
a well-calibrated model if the estimated probabilities are not spread
out (e.g., located at the extremes or near the separating plane).

2.2.2 Isotonic regression. Zadrozny and Elkan [31] proposed a non-
decreasing (or isotonic) step-wise regression function to address
the shortcomings of Platt scaling. The benefit of this function is the
non-parametric approach which avoids specifying the number of
bins and the target function shape (e.g., sigmoid). However, the non-
parametric isotonic regression model requires sufficient samples to
properly learn the calibration curve, whereas Platt scaling may be
preferred in the presence of limited calibration data.

2.2.3 Calibration of Random Forests. There have been two existing
works that have focused on the calibration of random forests for
better probability estimation. Boström [6] observed that for each
training sample, an out-of-bag prediction (i.e., prediction by aver-
aging trees in the forest for which the sample is not in the training
set) can be constructed from approximately a third of the trees in
the forest. This value can then be used to scale the probability using
a correction probability. Unfortunately, the experimental results
did not illustrate considerable improvement when compared with
the standard technique of utilizing a separate calibration dataset.

3 CALIFOREST
While out-of-bag (OOB) samples can serve as a calibration set, it
is important to note the key difference between these samples and
the calibrations samples. Each sample’s OOB prediction will reflect
approximately one-third of the trees in the forest, as an average of
63.2% of the training examples are used to grow an individual tree.
Thus, the OOB prediction (i.e., predicting by averaging trees in the
forest for which the sample is not in the training set) may not be
truly representative of the actual random forest prediction itself,
as two-thirds of the model is not participating in the estimation.
Consequently, learning a calibration function using these noisy,
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Metric Formula Perfect Calibration

Brier score
1
𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 0

Scaled Brier score 1 −
∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2

𝑁𝑦 (1 − 𝑦) 1

Hosmer-Lemeshow statistic
10∑
𝑔=1

(∑𝑖∈G𝑔
𝑦𝑖 −

∑
𝑖∈G𝑔

𝑦𝑖 )2

𝑁𝑔𝜋𝑔 (1 − 𝜋𝑔 )
, where 𝜋𝑔 = 1

𝑁𝑔

∑
𝑖∈G𝑔

𝑦𝑖 1

Spiegelhalter z-statistic
∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖 ) (1 − 2𝑦𝑖 )√∑𝑁
𝑖=1 (1 − 2𝑦𝑖 )2𝑦𝑖 (1 − 𝑦𝑖 )

1

Reliability-in-the-small
1
10

10∑
𝑔=1

( 1
𝑁𝑔

∑
𝑖∈G𝑔

𝑦𝑖 −
1
𝑁𝑔

∑
𝑖∈G𝑔

𝑦𝑖 )2 0

Reliability-in-the-large ( 1
𝑁

𝑁∑
𝑖=1

𝑦𝑖 −
1
𝑁

𝑁∑
𝑖=1

𝑦𝑖 )2 0

Table 1: The formulas for the six common calibration metrics. 𝑦𝑖 denotes the actual outcome, 𝑦𝑖 represents the estimated risk
probability, 𝑁 indicates the total number of subjects, and 𝐺𝑔 denotes the patients in group 𝑔.

OOB predictions may not yield a substantially better-calibrated
model (as demonstrated by the empirical results in [6]).

CaliForest mitigates the noise in the OOB predictions by utiliz-
ing each individual OOB sample prediction from each tree. The
key observation is to calculate the variance of the individual tree
predictions to estimate the certainty of the OOB prediction. Con-
ceptually, if all the OOB sample predictions for a single sample
across the various trees are similar, then it is more likely the other
trees will produce a similar result. However, if all the OOB sample
predictions have a large range, then we should be less certain about
that particular sample. The calibration model can then leverage
this information in the form of sample weights to learn a robust
calibration function. The process is illustrated in Figure 1.

3.1 CaliForest Sample Weights
For each sample, the estimated prediction from the random forest
can be decomposed into two parts, the OOB prediction and the
non-OOB prediction.

𝑦val𝑖 =

∑𝐾
𝑘
𝑓𝑘 (x𝑖 )
𝐾

(1)

𝑦val𝑖 =

∑𝐾
𝑘
𝑓𝑘 (x𝑖 )1(x𝑖 ∈ OOB𝑘 )∑𝐾
𝑘
1(x𝑖 ∈ OOB𝑘 )︸                            ︷︷                            ︸

�̂�oob
𝑖

+
∑𝐾
𝑘
𝑓𝑘 (x𝑖 )1(x𝑖 ∉ OOB𝑘 )∑𝐾
𝑘
1(x𝑖 ∉ OOB𝑘 )

(2)

The OOB prediction can be obtained directly from the random for-
est, while the non-OOB prediction is unobserved. Thus, we can
approximate the estimated sample prediction to be centered around
the OOB prediction with some noise. Under the assumption that
there will be sufficient trees, the noise will follow a normal distri-
bution centered around 0 with unknown variance, 𝜎2

𝑖
:

𝑦val𝑖 = 𝑦oob𝑖 + Y𝑖 , Y𝑖 ∼ Normal(0, 𝜎2
𝑖 ) (3)

Figure 1: An illustration of the CaliForest process. The key
observation is the use of the individual predictions on the
out-of-bag sample to calculate a weight associated with each
sample.

Since each sample will belong to a varying number of OOB
samples (i.e., 0 to total number of trees), we estimate the variance
of the noise using the Bayesian update associated with an Inverse
Gamma conjugate prior. Thus, if the 𝑖th sample belongs to a large
number of OOB samples and has a low sample variance, the estimate
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should be close to the corresponding sample variance, �̂�𝑜𝑜𝑏
𝑖

. If the
𝑖th sample is not selected for any OOB samples, then it should take
the maximum possible variance for a bounded random variable
between 0 and 1, which is 0.25. Note that the prior variance is
thereby assumed to be 0.25 (= 𝛽0/𝛼0), or the maximum possible
variance. Therefore, the variance is estimated using the following
updates:

𝛼 = 𝛼0 + 𝑛oob𝑖 /2 (4)

𝛽 = 𝛽0 + 𝑠2
𝑖 /2,where 𝑠2

𝑖 = Var(𝑓𝑘 (x𝑖 ) | x𝑖 ∈ OOB𝑘 ) (5)

𝜎2
𝑖 = 𝛽/𝛼 (6)

Each sample weight is then inversely proportional to the vari-
ance, 𝜎2

𝑖
:

𝑤𝑖 = 1/𝜎2
𝑖 = 𝛼/𝛽 (7)

The idea is that if the variance is small, then the estimated prediction
from the random forest, 𝑦val

𝑖
will be close to the OOB prediction

𝑦oob
𝑖

. Therefore, the calibrationmodel should trust this sample more.
However, if the variance is large, then the estimated prediction may
be quite different from the OOB prediction, and thus should be
discounted in the learned calibration. The sample weights can then
be passed with the OOB predictions to either the isotonic regression
or logistic regression model.

3.2 Python Package
We developed califorest, an open-source Python package, to
enable widespread usage of CaliForest. califorest builds on scikit-
learn, a standard Python module that integrates a wide range of
state-of-the-art machine learning algorithms [20]. By following
the scikit-learn coding convention, a practitioner can easily deploy
CaliForest to achieve both good discrimination and calibration. The
package is published on the Python Package Index (PyPI), a standard
Python software repository. Therefore, it can be installed using the
standard “pip install califorest" command. Additionally, the code
is also openly available on GitHub at https://github.com/yubin-
park/califorest under the permissive MIT license. This will enable
continuous and collaborative development.

The usage of the califorest package is identical to using any
machine learning module from scikit-learn. First, the package is
imported into the Python environment. The CaliForest algorithm is
then applied by creating an instance of the CaliForest class. The
CaliForest model is then trained by calling the fit function with
two arguments, the input data array (or features) and the array of
labels. Since CaliForest is a supervised estimator, it also provides
the predict function to predict the class label for new data. Thus,
the usage is as follows:

1 from c a l i f o r e s t import C a l i F o r e s t
2
3 model = C a l i F o r e s t ( )
4 model . f i t ( X_ t ra in , y _ t r a i n )
5 model . p r e d i c t ( X_ t e s t )

Therefore, CaliForest can be easily exchanged in existing software
appplications that already utilize the RandomForest classifier from
scikit-learn.

Task Samples Features Prevalence

In-hospital Mortality 23,937 7,488 10.52%
In-ICU Mortality 23,937 7,488 7.09%
Length-of-stay > 3 23,937 7,488 42.96%
Length-of-stay > 7 23,937 7,488 7.70%

Table 2: The summary statistics for the four prediction
tasks.

The califorest package also contains implementations for five
of the six calibration metrics (except Brier score) described in Table
1. Note that scikit-learn already has an implementation for the Brier
score. The calibration metrics also follow the evaluation metric
convention introduced in scikit-learn. In particular, each metric
has its own function and the two arguments to be passed into the
function are the true labels and the estimated risk. Thus, the usage
for the scaled Brier score is as follows:

1 from c a l i f o r e s t import me t r i c s
2
3 me t r i c s . s c a l e d _ b r i e r _ s c o r e ( y_ t rue , y_pred )

4 EXPERIMENTAL RESULTS
We will illustrate the benefits of CaliForest on several binary pre-
diction tasks using real-world electronic health records.

4.1 Data
We used MIMIC-III, a publicly-available, de-identified dataset that
contains information about intensive care unit (ICU) patients from
the Beth Israel Deaconess Medical Center [16]. We focused on two
varieties of two common risk prediction tasks, mortality and long
length-of-stay (LOS). These prediction tasks were chosen since they
have been highlighted as benchmark tasks in several existing works
[9, 22, 29]. Moreover, random forests have been shown to achieve
great performance on these tasks [7, 18]. The four binary prediction
tasks are:

(1) In-ICU mortality: Predict whether the patient dies during
the ICU stay after ICU admission.

(2) In-hospital mortality: Predict whether the patient dies during
the hospital stay after ICU admission.

(3) Length-of-stay > 3 days: Predict whether the patient will
stay in the ICU longer than 3 days.

(4) Length-of-stay > 7 days: Predict whether the patient will
stay in the ICU longer than 7 days.

Table 2 summarizes the statistics for the four prediction tasks.
We used MIMIC-Extract [29], an open-source pipeline, to con-

struct the data cohort and the four binary prediction tasks. We use
the default cohort construction, which focuses on the patient’s first
ICU visit and requires patients to be over 15 years old and have
at least 30 hours of data present. Only the first 24 hours of a pa-
tient’s data is considered. Time-varying labs and vitals are grouped
together into hourly summary statistics, and static demographic
features are one-hot encoded. All the values are mean-centered and
scaled to have a unit variance. Missing data are imputed using the

43



CaliForest: Calibrated Random Forest for Health Data ACM CHIL ’20, April 2–4, 2020, Toronto, ON, Canada

scheme outlined in [7]. For details of the data standardization and
aggregation, see [29].

4.2 Baseline Models and Evaluation Setup
CaliForest is compared with calibrated random forest and the un-
calibrated random forest. For both CaliForest and random forest,
both the Platt scaling and isotonic regression function are used as
calibration models. Thus, we evaluated five different models:

• CaliForest with isotonic regression (CF-Iso): Our model with
the calibration model using the isotonic regression function
trained on the sample weighted out-of-bag samples shown
in Figure 1.

• CaliForest with Platt scaling (CF-Logit): Similar to the CF-Iso
model above except the calibration model is the Platt scaling
function.

• Random forest calibration with isotonic regression (RC-Iso):
The random forest model trained on 70% of the training data
and the isotonic regression function is then learned on the
30% calibration set.

• Random forest calibration with Platt scaling (RC-Logit): Sim-
ilar to the RF-IOS model above except the sigmoid function
is learned on the 30% calibration set.

• Random Forest with no calibration (RF-NoCal): The standard
scikit-learn random forest model learned on the entire
training set without any calibration model applied.

We did not include the calibrated random forests proposed by
Boström [6] as our experiments did not show any difference be-
tween this model and the Random Forest with isotonic regression.

Each model was evaluated using the same 10 Monte Carlo cross-
validation samples, each with a 70-30 train-test split. We tuned the
maximum depth of the decision tree and the number of estimators
in the random forest model using the out-of-bag samples. It is im-
portant to note that since both isotonic regression and Platt scaling
perform a monotonic transformation of the random forest model
predictions, the sample rankings are predominantly preserved and
thus their predictive performance (as measured by AUROC) is un-
likely to change substantially. We compared each model based on
the six commonly published calibration metrics (summarized in
Table 1) evaluated on the test set. For the scaled Brier score, Hosmer-
Lemeshow p-value, and Spiegelhalter p-value metrics, the higher
the number (closer to 1), the better calibrated the model is. For
the Brier score, reliability-in-the-small, and reliability-in-the-large
metrics, the lower the number (closer to 0), the better calibrated
the model is.

4.3 Mortality Prediction
4.3.1 In-hospital mortality. First, we present an in-depth case study
on the in-hospital mortality prediction task. Figure 2 presents the
AUROC (predictive performance) for the five different models over
the two hyperparameters, decision tree depth and the number of
estimators. The predictive performance improves as the individual
trees are grown deeper (last column of plots with depth=10) and
there are more trees (last row of plots with n_estimators=300). It
can also be observed from the figure that both RC-Iso and RC-Logit
have a slightly worse performance with deeper trees (depth ≥ 7)
due to the difference in training data. Since RC-Iso and RC-Logit

are only trained on 70% of the data, the individual trees do not
generalize as well.

To better understand the impact of the hyperparameters on the
calibration performance, Figure 3 illustrates the Brier score for each
of the five different models. As the trees become deeper and there
are more trees, the Brier score improves which indicates the overall
calibration of the models is better. The figure also illustrates the
importance of learning a calibration function using a calibration
set, as the calibrated models all have lower Brier scores than RF-
NoCal. A closer comparison of the standard calibration approach
(RC-Iso, RC-Logit) with the non-calibrated version (RF-NoCal) on
Figures 2 and 3 illustrate the well-known trade-off between discrim-
ination and calibration for limited samples. However, CaliForest
can achieve both comparable discriminative performance with the
non-calibrated version and have the lowest Brier score amongst
all the models. This illustrates the power of utilizing the sample
weights to estimate a better calibration function.

Figure 4 plots the performance of the five models using depth =
10 and 300 trees across the six different metrics. For the top row (i.e.,
scaled Brier score, Hosmer-Lemeshow p-value, and Spiegelhalter p-
value), a higher value signifies better calibration while for the lower
row (i.e., Brier score, reliability-in-the-small, and reliability-in-the-
large), a lower value indicates a better calibration model. Except for
the reliability-in-the-large, across all other five calibration metrics,
CF-Iso outperforms the other 4 models. In fact, the performance
differences for the reliability-in-the-large are not statistically sig-
nificant given the range of the values (≈ 1𝑒 − 5). As can be seen,
the calibrated models generally outperform the standard random
forest model across all the metrics.

Figure 5 explores the relationship between the sample weights,
the OOB prediction, and the isotonic fit. In Figure 5a, we observe
that about a half of the samples have small weights (weight ≤ 50),
while another half have a largeweight (weight ≥ 200). This indicates
that there are two groups of OOB predictions: reliable and un-
reliable predictions. The plot (5a) also illustrates the limitation of
naively using the OOB prediction itself to learn the calibration
function, as a significant portion of the OOB samples will be noisy.

Figure 5b plots the relationship between the OOB prediction
and the sample weights. The majority of the small weights (weight
≤ 50) are associated with non-zero estimated risk (𝑦oob

𝑖
> 0.25).

This suggests that a handful of trees are certain these samples
should be positive and are pushing up the OOB prediction scores,
but in fact there is a large variance in the estimated predictions
themselves. Thus, the learned calibration function can potentially
pull these values down. This is further substantiated in Figure 5c
which showcases that the piece-wise step function isotonic regres-
sion has a linear relationship for the lower values before flattening
out towards the larger OOB predictions.

4.3.2 In-ICU mortality. Next, we evaluate the calibration of the
various random forest models on the In-ICUmortality task. The best
performance is achieved with deeper trees (depth = 10) and more
trees (number of estimators=300). In addition, the discrimination
is similar between CF-Iso, CF-Logit, RF-NoCal, while RC-ISo and
RC-Logit have a slightly lower performance due to setting aside
30% for a calibration set as shown in Figure 6a.
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Figure 2: [In-hospital Mortality] AUROC over different hyperparameters with maximum tree depth = [5,7,10] (column) and
number of estimators = [100,200,300] (row).

Figure 3: [In-hospital Mortality] Brier Score over different hyperparameters withmaximum tree depth = [5,7,10] (column) and
number of estimators = [100,200,300] (row).
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Figure 4: [In-hospital Mortality] Calibration metrics for the five models with depth = 10 and number of estimators = 300.

(a) Weight Histogram (b) Y OOB vs Weights (c) Y OOB vs Iso. Fit

Figure 5: [In-hospital Mortality] Sample weight characteristics for CF-Iso using depth = 10 and number of estimators = 300.

Figure 7 plots the performance of the five models on the six
different calibration metrics. Similar to the in-hospital mortality
task, CF-Iso generally achieves the best calibration. The excep-
tions where CF-Iso is not noticeably better are according to the
Spiegelhalter p-value and the reliability-in-the-large. However, the
variance of the Spiegelhalter p-value across the 10 different cross-
validation samples for CF-Iso is smaller than RC-ISO and RC-Logit.
Also, the performance differences of the reliability-in-the-large are

not statistically significant given the range of the values. Thus,
Figure 7 suggests that CF-Iso is overall the best-calibrated model.
The figure also showcases that calibrating the random forest model
generally seems to help the overall-calibration compared to the
non-calibrated case (RF-NoCal).
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(a) In-ICU mortality. (b) 3 Day LOS (c) 7 Day LOS

Figure 6: AUROCs for the best hyperparameter for the ICU-Mortality, 3 and 7 Day LOS prediction tasks.

Figure 7: [ICU Mortality] Calibration metrics for the five models with depth = 10 and number of estimators = 30.

4.4 Length-of-stay Prediction
4.4.1 Length-of-stay > 3 days. Next, we evaluate the calibration of
the various random forest models on predicting whether the patient
will stay in the ICU longer than 3 days. The best performance is
achieved with deeper trees (depth = 10) and more trees (number of
estimators=300). In addition, the discrimination is similar between
CF-Iso, CF-Logit, RF-NoCal, while RC-ISo and RC-Logit have a
slightly lower performance due to setting aside 30% for a calibration
set as shown in Figure 6b.

Figure 8 plots the calibration performance on the task of pre-
dicting Length-of-stay > 3 days. Similar to the previous two tasks,

CF-Iso generally achieves the best calibration. Unlike the previous
mortality prediction tasks, there is no clear benefit of setting aside
a calibration set to improve the calibration. For scaled Brier score,
Brier score, and the Hosmer-Lemeshow p-value, there is no no-
ticeable improvement in Figure 8. This coupled with the decrease
in discriminative performance (shown in Figure 6b) illustrates the
limitation of the separate calibration set.

4.4.2 Length-of-stay > 7 days. Last, we evaluate the calibration of
the various random forest models on predicting whether the patient
will stay in the ICU longer than 7 days. The best performance is
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Figure 8: [3 Day LOS] Calibration metrics for the five models with depth = 10 and number of estimators = 300. The calibration
performance of CF-Logit is not displayed due to its unstable performance.

achieved with shallower trees (depth = 5) and more trees (number of
estimators=300). We observe that similar to the previous three tasks,
the discrimination is similar between CF-Iso, CF-Logit, RF-NoCal,
while RC-Iso and RC-Logit have a slightly lower performance due
to setting aside 30% for a calibration set as shown in Figure 6c.
Figure 9 plots the calibration performance of the models on 7 day
LOS. As was the trend for the other three tasks, CF-Iso outperforms
the other models.

5 DISCUSSIONS
We introduced CaliForest, a calibrated random forest model, to
improve the calibration of random forest without sacrificing the
discrimination ability of the model. CaliForest utilizes the OOB
samples to learn the calibration model. However, instead of blindly
trusting the OOB predictions, CaliForest considers the variance of
the OOB prediction to determine the importance of the sample. By
accounting for the uncertainty in the non-OOB predictions, the
learned calibration function can substantially improve the calibra-
tion of the models.

We demonstrated CaliForest on four binary prediction tasks us-
ing MIMIC-III data. Our empirical results illustrate the benefits of
utilizing the OOB predictions to estimate the sample weights and
predictions, which are both then used to learn the calibration func-
tion. The results across the four tasks suggest that using isotonic
regression as the calibration method maintains the same discrimina-
tion of the standard random forest, while improving the calibration
of the model measured on a variety of calibration metrics.

An interesting observation drawn from the experiments is that
CaliForest using the Platt scaling function as a calibration model
did not always yield improved calibration. One hypothesis is the
sigmoid function was not an appropriate calibration function for
these tasks, as the risk predictions may be biased. Another hypoth-
esis is that the sample weights need to be tailored for the sigmoid
function separately. Further exploration of the sample weights for
the Platt scaling function is left for future work. In addition, Cali-
Forest can be generalized to encompass other calibration functions
such as the adaptive calibration procedure introduced in [14] or
the Venn-Abers predictors [15].

CaliForest is published on the standard Python software reposi-
tory under the califorest package and the code will be openly
available onGithub (URL: https://github.com/yubin-park/califorest).
The package enables software developers to easily exchange exist-
ing software deployments that utilize the random forest classifier
from scikit-learn with CaliForest for improved calibration. More-
over, the release of the califorest package also enables calibration
to be examined more thoroughly, with the calibration metrics de-
scribed in Table 1 already implemented.
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