
Communication Efficient Federated Generalized Tensor
Factorization for Collaborative Health Data Analytics

Jing Ma, Qiuchen Zhang, Jian Lou*, Li Xiong, Joyce C. Ho

Emory University

jing.ma,qiuchen.zhang,jian.lou,lxiong,joyce.c.ho@emory.edu

ABSTRACT
Modern healthcare systems knitted by a web of entities (e.g., hos-

pitals, clinics, pharmacy companies) are collecting a huge volume

of healthcare data from a large number of individuals with vari-

ous medical procedures, medications, diagnosis, and lab tests. To

extract meaningful medical concepts (i.e., phenotypes) from such

higher-arity relational healthcare data, tensor factorization has

been proven to be an effective approach and received increasing

research attention, due to their intrinsic capability to represent the

high-dimensional data. Recently, federated learning offers a privacy-

preserving paradigm for collaborative learning among different enti-

ties, which seemingly provides an ideal potential to further enhance

the tensor factorization-based collaborative phenotyping to handle

sensitive personal health data. However, existing attempts to feder-

ated tensor factorization come with various limitations, including

restrictions to the classic tensor factorization, high communication

cost and reduced accuracy. We propose a communication efficient
federated generalized tensor factorization, which is flexible enough

to choose from a variate of losses to best suit different types of data

in practice. We design a three-level communication reduction strat-

egy tailored to the generalized tensor factorization, which is able

to reduce the uplink communication cost up to 99.90%. In addition,

we theoretically prove that our algorithm does not compromise

convergence speed despite the aggressive communication compres-

sion. Extensive experiments on two real-world electronics health

record datasets demonstrate the efficiency improvements in terms

of computation and communication cost.

CCS CONCEPTS
• Information systems → Data extraction and integration; •
Applied computing→ Health informatics.

KEYWORDS
Electronic Health Records (EHR), Tensor Factorization, Federated

Learning, Computational Phenotyping

ACM Reference Format:
Jing Ma, Qiuchen Zhang, Jian Lou*, Li Xiong, Joyce C. Ho. 2021. Communica-

tion Efficient Federated Generalized Tensor Factorization for Collaborative

Health Data Analytics. In Proceedings of theWeb Conference 2021 (WWW ’21),

*Corresponding Author.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3449832

April 19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3442381.3449832

1 INTRODUCTION
Recent years have witnessed an unprecedented growth of health

data (e.g., in the form of EHR, electronic health records) being col-

lected from a variety of institutions, including hospitals, clinics,

pharmaceutical companies, and health insurance providers. Com-

putational phenotyping, the process of extracting meaningful and

concise medical concepts (i.e., phenotypes) from the health data, is

an indispensable stepping stone towards in-depth medical decision-

making, including precision medicine, influenza surveillance, drug

discovery, to name a few. Computational phenotyping is known to

be challenging, given the fact that health data are collected from a

large number of individuals with each one’s medical record consist-

ing of various of medical procedures, medications, diagnosis and lab

tests. That is, the health data is massive and multidimensional. In

addition, in order to collaboratively learn phenotypes from the data

belonging to different institutes (known as collaborative phenotyp-

ing), the sensitive nature of the health data serves as an additional

restriction.

To learn phenotypes from the multidimensional EHR data, tensor

factorization has received increasing interest [12–14, 20, 27, 28, 36].

Tensor has the intrinsic capability to succinctly represent the mul-

tidimensional data [21] and has applications beyond health data

analytics, e.g., recommender systems [18], spatio-temporal data

analysis [26], computer vision [35], and signal processing [32]. The

CANDECOMP/PARAFAC or canonical polyadic (CP) tensor factor-

ization (TF) [7, 11] and its generalization GTF [15] are fundamental

tools for analyzing the tensors. Despite their effectiveness and wide

applications, the scalability is often a major issue preventing it from

being applied to larger scale health datasets, which are commonly

encountered nowadays. To improve the scalability of TF, distributed

tensor factorization (DTF) methods [6, 9, 12, 20, 27, 31, 41] are ca-

pable of processing large tensors that cannot be dealt by a single

machine. It also complies with the practical scenario for the health

data which is collected and held across multiple physically dis-

tributed medical institutions.

Most recently, federated tensor factorization (FTF) methods [20,

27] are proposed as a better DTF paradigm for decentralized data

in terms of privacy protection, while maintaining similar computa-

tional and storage scalability. It avoids communicating both the raw

tensor and individual mode related variables to the server, which

shares the same spirit of the more general federated learning [17],

i.e., to learn a joint model across all the clients without communicat-

ing individual-level data. By avoiding sharing the raw tensor and

the patient mode related variables (e.g., patient factor and partial

https://doi.org/10.1145/3442381.3449832
https://doi.org/10.1145/3442381.3449832

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jing Ma, Qiuchen Zhang, Jian Lou*, Li Xiong, Joyce C. Ho

gradient along the patient mode), FTF offers better patient privacy

protection.

Besides computational complexity and alleviating storage usage

which are the focus of most existing DTF methods, the communica-

tion overhead can be a third important bottleneck, especially for the

federated setting, where the participating institutions do not have

a dedicated communication network for communication purposes,

e.g., hospitals, clinics. Considering the asymmetric bandwidths, the

uplink communication (i.e. the communication from the client to

the server) can quickly become the bottleneck preventing these

clients from participating in the FTF. In federated computational

phenotyping, due to the great variety of the attributes (e.g., types

of medication can be thousands), the high dimensional tensor in-

curs high communications cost to communicate the intermediate

variables during each communication cycle.

1.1 Contributions
In this paper, we investigate how to reduce the uplink communica-

tion cost of the federated tensor factorization-based collaborative

phenotyping with guaranteed convergence and quality preserva-

tion. It is a challenging task, especially considering the communi-

cation efficiency issue is under studied in the broader distributed

tensor factorization literature. To be more flexible and suitable for a

variety of applications, we consider the federated generalized tensor

factorization (FGTF), which greatly extends the existing federated

classic TF [20, 27].

First, we aim to reduce the uplink communication cost in each

communication round. We design a two-level per-round commu-

nication reduction strategy: block-level and element-level, which

reduce (1 − 1

𝐷
) and over 96.8% of the uplink communication, cor-

respondingly, where 𝐷 is the number of blocks. For the block-level,

we exploit the multi-factor structure of TF/GTF by utilizing the

randomized block update. It enables each client to send only the

partial gradient of the sampled block, rather than the full gradient

of all blocks. For the element-level, we introduce gradient com-

pression techniques, which have found success in deep learning

training [2, 4, 19, 37, 42], to compress each element of the commu-

nicated partial gradient from the floating point representation to

low-precision representation. Since there exists error between the

true partial gradient and the compressed one, the convergence can

be slower and the output quality can be lower. We further introduce

the error-feedback mechanism [19] which records such error and

feeds it back to restore the shift.

With both levels of per-round communication reduction, we pro-

pose the federated GTFwith communication compression and error-

feedback (FedGTF-EF). We analyze the convergence of FedGTF-
EF and obtain the 𝑂 (1√

𝑇
) rate after 𝑇 iterations (Thm.4.1) under

common and mild assumptions (Assumptions 4.1–4.5). The conver-

gence is equivalent to the distributed stochastic gradient descent

(SGD) with full precision gradient communication and distributed

SGD with gradient compression and error-feedback [42]. In addi-

tion, since constraints and nonsmooth regularizations are common

in GTF, we further extend the convergence result to the proximal

setting (4.2) where the additional “simple regularizer” in Assump-

tion 4.6 is satisfied. Compared to the existing analysis with gradient

compression and error-feedback, our convergence analysis accounts

Table 1: Symbols and notations used in this paper

Symbol Definition

x,X,X Vector, Matrix, Tensor

X<𝑑> Mode-𝑑 matricization of X

∥ · ∥1 ℓ1-norm

∥ · ∥𝐹 Frobenius norm

⊛ Hadamard (element-wise) multiplication

⊙ Khatri Rao product

◦ Outer product

⟨·, ·⟩ Inner product

for both the block randomized update strategy and the proximal

operation.

Second, we reduce the number of communication rounds to

further reduce the uplink communication. To do so, we introduce

periodic communication [4, 23, 33] into FedGTF-EF and denote

this algorithm as FedGTF-EF-PC, in which the clients send the

update to the server after 𝜏 > 1 local iterations instead of com-

municating after every iteration. A key question is whether the

periodic communication will slow down the convergence. If so,

the number of iterations will increase and the overall number of

communications may not reduce. We analyze the convergence

of FedGTF-EF-PC in Thm. 4.3 and obtain the same convergence

𝑂 (1√
𝑇
) rate with FedGTF-EF under the same set of assumptions.

This indicates that FedGTF-EF-PC can indeed further reduce the

uplink communication cost by 1 − 1

𝜏 . As a result, our proposed

FedGTF-EF-PC can reduce up to 1 − 1

32𝐷𝜏
uplink communication

cost if the Sign compressor (Def.2.1) is used.

Third, we evaluate FedGTF-EF and FedGTF-EF-PC in the fed-

erated collaborative phenotyping task. We conduct experiments

on two real-world EHR datasets, which show that the proposed

method can effectively reduce uplink communication cost (99.90%

reduction), without compromising convergence and factorization

quality.

2 PRELIMINARIES AND BACKGROUND
2.1 Notation
The frequently used notation in this paper is summarized in Table

1. We denote an order 𝐷 tensor by X ∈ R𝐼1×...×𝐼𝐷 , its (𝑖1, ..., 𝑖𝐷)-th
element by MATLAB representation X(𝑖1, ..., 𝑖𝐷). Let I denote the

index set of all tensor entries, |I | = 𝐼Π =
∏𝐷
𝑑=1

𝐼𝑑 . The mode-𝑑 un-

folding (also called matricization) is denoted by X<𝑑> ∈ R𝐼𝑑×𝐼Π/𝐼𝑑 ,
where (X<𝑑>) (𝑖𝑑 , 𝑗) and X(𝑖1, 𝑖2, ..., 𝑖𝐷) has the index mapping:
𝑗 = 1 +∑𝐷

𝑘=1,
𝑘≠𝑑

(𝑖𝑘 − 1) 𝐽𝑘 , 𝐽𝑘 =
∏𝑘−1

𝑞=1,

𝑞≠𝑑

𝐼𝑞 . Each column X<𝑑> (:, 𝑗) is

called a mode-𝑑 fiber of X.

2.2 Generalized Tensor Factorization
As illustrated in Fig.1, let us consider the EHR tensorX ∈ R𝐼1×,...,×𝐼𝐷 ,
which consists of patient mode (𝐼1), diagnosis mode (𝐼2), medication

mode (𝐼3), and so on. The regularized Generalized CANDECOMP-

PARAFAC (GTF) [15] extracts the phenotypes by decomposing the

EHR tensor into 𝑅 phenotyps, where each consists of a patient fac-

tor, diagnosis factor, and a medication factor. GTF has the following

Communication Efficient Federated Generalized Tensor Factorization for Collaborative Health Data Analytics WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Figure 1: Illustration of EHR tensor and phenotype extrac-
tion via tensor factorization [14].

objective function:

argmin

A
𝐹 (A,X) =

∑
𝑖∈I

𝑓 (A(𝑖),X(𝑖)) +
𝐷∑
𝑑=1

𝑟𝑑 (A(𝑑)),

𝑠 .𝑡 . A =

𝑅∑
𝑖=1

A(1) (:, 𝑖) ◦ ... ◦ A(𝐷) (:, 𝑖),

(1)

which breaks down into three parts:

(1) Factorization constraint: The constraint of A =
∑𝑅
𝑖=1 A(1) (:

, 𝑖) ◦ ... ◦ A(𝐷) (:, 𝑖) approximates the low-rank CP tensorA ∈
R𝐼1×,...,×𝐼𝐷 as the sum of 𝑅 rank-one tensors, where A(𝑑) ∈
R𝐼𝑑×𝑅 is the 𝑑-th factor matrix and A(𝑑) (:, 𝑖) is its 𝑖-th column.

For phenotyping, A(1) ,A(2) ,A(3) correspond to the patient fac-
tor, diagnosis factor, and medication factor, correspondingly.

(2) Element-wise loss function: 𝑓 (A(𝑖),X(𝑖)) is the element-wise

loss between the low-rank CP tensorA and the input tensorX.

For the classic CP [7, 11], 𝑓 (A(𝑖),X(𝑖)) := 1

2
(A(𝑖) − X(𝑖))2,

which is the least square loss. GCP is more generalized in the

sense that the loss function can take other forms to best suit the

property of the input tensor. For example, 𝑓 (·) can be chosen

based on the distribution of the tensor entries, e.g. logit loss for

binary data: 𝑓
logit

= log(1 +A(𝑖)) −X(𝑖)A(𝑖), for all 𝑖 ∈ I, or
𝑓 (·) can be the Huber loss for robustness purpose.

(3) Regularization: 𝑟𝑑 (·) is the regularization applied to the factor

A𝑑 , which can be the smooth ∥A(𝑑) ∥2𝐹 norm or the nonsmooth

∥A(𝑑) ∥1 norm. In practice, the regularization can improve the

interpretability of the phenotypes.

Existing federated computational phenotyping. Two recent

papers [20] and [27] consider federated tensor factorization and

apply it to the federated phenotyping. They have the following

limitations. 1) Both are limited to the CP model and [20] applies

least square solver as its client side local updater, which is difficult

to be extended to more general losses other than least square loss. 2)

Although extensible to using infrequent communication, each com-

munication round still incurs high communication cost since both

requires sending all factors in full precision. In addition, [20] also

requires communication of the Lagrangian dual variables which

doubles the communication cost. 3) Both alter the original objec-

tive function by introducing extra terms to enforcing consensus

of factors among all clients: [20] introduces linear constraint and

transforms it to Lagrangian dual formulation while [27] introduces

elastic penalty terms. These terms can lead the extracted factors to

deviate from the centralized solution, thus negatively impacting

the phenotyping accuracy.

Figure 2: Illustration of collaborative phenotyping via feder-
ated tensor factorization [20].

2.3 SGD with Gradient Compression,
Error-Feedback and Periodic
Communication

Gradient Compression. Recently, one of the most successful ap-

proaches to mitigating the communication overhead is via gradient

compression, which compresses the gradient to be communicated

from the full precision representation (e.g. float or double number

representation) to a much lower precision representation (e.g. ag-

gressively compressed to 1-bit). The following definition introduces

one of the most popular compressors:

Definition 2.1. (Sign Compressor) For an input tensor x ∈ R𝑑 , its
compression via Sign(·) is Sign(x) = ∥x∥1/𝑑 · 𝑠𝑖𝑔𝑛(x), where 𝑠𝑖𝑔𝑛
takes the sign of each element of x.

Error-Feedback. Due to aggressive compression, the algorithm

can converge slower (or even diverge) compared to the full precision

counterpart. The main cause is the error between the full precision

gradient and the compressed one. Error-feedback [19, 34, 42] is a

technique that memorizes this error in the current iteration and

feeds it back to the gradient of the next iteration. By doing so, it

can rigorously guarantee uncompromised convergence compared

to the full-precision SGD.

Periodic Communication. Instead of reducing the communica-

tion cost per-communication round, periodic communication or

local SGD [23, 33] reduces it by decreasing the communication

frequency in hope that the total number of communications rounds

can be reduced. Each clients will execute 𝜏 > 1 local updates be-

fore communicating to the server. [4] shows that it is possible to

combine communication compression and periodic communication

together. [34] provides a unified framework by error-feedback to

analyze the convergence of gradient compression and local SGD.

3 PROPOSED METHODS
Under the federated setting as illustrated in Fig.2, the EHR tensor

X ∈ R𝐼1×,...,×𝐼𝐷 will be collectively held by 𝐾 institutions. The 𝑘-

th client’s local tensor is denoted by X𝑘 ∈ R𝐼1𝑘 ×𝐼2×...×𝐼𝐷 , which
contains information about 𝐼

1
𝑘 individuals, such that

∑𝐾
𝑘=1

𝐼
1
𝑘 = 𝐼1.

That is, we consider the horizontally partitioned setting where

different hospitals share the same feature space. We also note that

there are related works addressing other settings like vertically

partitioned settings [8, 24, 25, 39] which are complementary to our

work. The aim of the federated computational phenotying is to

collaboratively compute the phenotyes from EHR tensor across

𝐾 institutions without sharing the raw tensor and patient mode

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jing Ma, Qiuchen Zhang, Jian Lou*, Li Xiong, Joyce C. Ho

Figure 3: Illustration of the execution of FedGTF-EF and
FedGTF-EF-PC.

variables. The objective function of the federated GTF is as follows

argmin

(A(1) ,...,A(𝐷))

𝐾∑
𝑘=1

𝐹 (A,X𝑘) +
𝐷∑
𝑑=1

𝑟𝑑 (A(𝑑)),

𝑠 .𝑡 . A = A(1) ◦ ... ◦ A(𝐷) .

(2)

In fact, the above formulation can be extended to general multi-

block problems as well. Thus, our algorithms are not limited to

federated GTF problems but also to other nonconvex problems

possessing a multi-block decision variable structure, e.g. [40]. In

the following, we propose the federated generalized tensor fac-

torization with communication efficiency improvements via block

randomization, gradient compression, error feedback and periodic

communication. The execution of the proposed algorithm is illus-

trated in Fig.3.

3.1 FedGTF-EF: Communication Efficient GTF
with Block Randomization, Gradient
Compression and Error-Feedback

We reduce the uplink communication in each communication

round at two levels: block-level and element-level. The detailed

algorithm is displayed in Algorithm 1 with functionalities of key

steps annotated. At the block-level, to avoid sending all factors,

we use a randomized block (i.e., randomized factor) update, which

only requires the communication of the partial gradient of the

factor being sampled (the computation of the partial gradient will

be detailed in Sec.3.3). At the element-level, we compress each

element of the communication to a low-precision representation

before sending to the server (Line 6). Each client 𝑘 keeps 𝐷 local

pairs of P𝑘(𝑑) (the error-shifted full-precision partial gradient), Δ𝑘(𝑑)
(the compressed gradient to be communicated), E𝑘(𝑑) (error record
between the full precision gradient and the compressed gradient),

for all 𝑑 = 1, ..., 𝐷 factors. Depending on whether the regularizer is

smooth or not, either simple gradient descent (Line 8) or proximal

gradient descent (Line 9) can be chosen to update the sampled

factor, respectively.

Algorithm1 FedGTF-EF: Communication Efficient GTFwith Block

Randomization, Gradient Compression and Error-Feedback

Input: X, 𝛾 [𝑡],A[0], randomized block sampling sequence

𝑑𝜉 [0], ..., 𝑑𝜉 [𝑇];
1: for 𝑡 = 0, ...,𝑇 do
2: On Each Client Nodes 𝑘 ∈ 1, ..., 𝐾 :
3: if 𝑑 = 𝑑 (𝜉) [𝑡] then
4: Compute stochastic gradient G𝑘(𝑑) [𝑡] by eq.(4);

5: P𝑘(𝑑) [𝑡] = 𝛾 [𝑡]G
𝑘
(𝑑) [𝑡] + E𝑘(𝑑) [𝑡]; %% error feedback

6: 𝚫
𝑘
(𝑑) [𝑡] = Compress(P𝑘(𝑑) [𝑡]) , Send 𝚫

𝑘
(𝑑) [𝑡] (i.e. 𝚫

𝑘
(𝑑𝜉 [𝑡])

[𝑡])
to the server; %% compression

7: Receive
1

𝐾

∑𝐾
𝑘=1

𝚫
𝑘
(𝑑) [𝑡] (i.e.

1

𝐾

∑𝐾
𝑘=1

𝚫
𝑘
(𝑑𝜉 [𝑡])

[𝑡]) from the

server;

8: Smooth regularization case: A(𝑑) [𝑡 + 1] = A(𝑑) [𝑡] −
1

𝐾

∑𝐾
𝑘=1

𝚫
𝑘
(𝑑) [𝑡]; %% update factor

9: Nonsmooth regularization case: A(𝑑) [𝑡 + 1] = Prox𝑟𝑑 (A(𝑑) [𝑡] −
1

𝐾

∑𝐾
𝑘=1

𝚫
𝑘
(𝑑) [𝑡]) ;

10: E𝑘(𝑑) [𝑡 + 1] = P𝑘(𝑑) [𝑡] − 𝚫
𝑘
(𝑑) [𝑡]; %% update error memory

11: else if 𝑑 ≠ 𝑑𝜉 [𝑡] then
12: A(𝑑) [𝑡 + 1] = A(𝑑) [𝑡], E𝑘(𝑑) [𝑡 + 1] = E𝑘(𝑑) [𝑡]; %% unselected

blocks are kept unchanged

13: end if
14: On Server Node:
15: Receive 𝚫

𝑘
(𝑑𝜉 [𝑡])

[𝑡] from all client nodes; Broadcast

1

𝐾

∑𝐾
𝑘=1

𝚫
𝑘
(𝑑𝜉 [𝑡])

[𝑡] to all client nodes;

16: end for

3.2 FedGTF-EF-PC: Further Communication
Reduction by Periodic Communication

We further reduce the uplink communication cost by introducing a

third communication compression level: round level. That is, we

decrease the communication frequency from one iteration per-

communication to 𝜏 > 1 iterations per-communication, which

manifests a periodic communication behaviour [4, 23, 33]. The

detailed algorithm is provided in Algorithm 2. The major difference

with Algorithm 1 is that each client compresses and sends the

collective updates across 𝜏 iterations (Line 9-10), instead of the

partial gradient in a single iteration. The error feedback (Line 9)

and error memory (Line 7, 13) are adjusted accordingly.

3.3 Efficient Partial Stochatic Gradient
Computation for FedGTF

After presenting the overall algorithms, we now present an effi-

cient partial stochastic gradient computation subroutine to compute

G𝑘(𝑑) [𝑡] in Step 1 of Fig.3 and Line 4 of Algorithm 1 and 2. The first

mode (i.e., 𝐼1) is the individual mode (e.g., patient mode) which can

be kept local to each client. Thus, when 𝑑𝜉 [𝑡] = 1, we skip the com-

munication, which not only further reduces the communication

cost, but also is beneficial to the privacy since the individual-level

information is not shared.

Next, we specify the computation of the partial stochastic gradi-

ent G𝑘(𝑑) [𝑡] based on the efficient fiber sampling technique [5, 10].

The deterministic partial gradient is ∇A(𝑑) 𝐹 (A) = Y<𝑑>H𝑑 [15],

where H𝑑 ∈ R𝐼Π/𝐼𝑑×𝑅 is the mode-𝑑 Khatri-Rao product of the all

Communication Efficient Federated Generalized Tensor Factorization for Collaborative Health Data Analytics WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Algorithm 2 FedGTF-EF-PC: Further Reducing Communication

Cost by Periodic Communication

Input: X, 𝛾 [𝑡],A[0],A𝑘 [0] = A[0], ∀𝑘 = 1, ..., 𝐾 , randomized block sam-

pling sequence 𝑑𝜉 [0], ..., 𝑑𝜉 [𝑇];
1: for 𝑡 = 0, ...,𝑇 do
2: On Each Client Nodes 𝑘 ∈ 1, ..., 𝐾 :
3: if 𝑑 = 𝑑 (𝜉) [𝑡] then
4: Compute stochastic gradient G𝑘(𝑑) [𝑡] by eq.(4);

5: A𝑘(𝑑) [𝑡 +
1

2
] = A𝑘(𝑑) [𝑡] − 𝛾 [𝑡]G

𝑘
(𝑑) [𝑡]; %% local update by sto-

chastic gradient descent

6: if (𝑡 mod 𝜏) ≠ 0 then
7: E𝑘(𝑑) [𝑡+1] = E𝑘(𝑑) [𝑡],A

𝑘
(𝑑) [𝑡+1] = A𝑘(𝑑) [𝑡+

1

2
],A𝑔(𝑑) [𝑡+1] =

A𝑔(𝑑) [𝑡]; %% no communication

8: else
9: P𝑘(𝑑) [𝑡] = (A𝑔(𝑑) [𝑡]−A

𝑘
(𝑑) [𝑡+

1

2
])+E𝑘(𝑑) [𝑡]; %% error feedback

to accumulated update

10: 𝚫
𝑘
(𝑑) [𝑡] = Compress(P𝑘(𝑑) [𝑡]) , Send 𝚫

𝑘
(𝑑) [𝑡] (i.e.

𝚫
𝑘
(𝑑𝜉 [𝑡])

[𝑡]) to the server;

11: Receive A𝑔(𝑑) [𝑡 + 1] from the server, A𝑘(𝑑) [𝑡 + 1] = A𝑔(𝑑) [𝑡 +
1]; %% compression

12: end if
13: E𝑘(𝑑) [𝑡 + 1] = P𝑘(𝑑) [𝑡] − 𝚫

𝑘
(𝑑) [𝑡]; %% update error memory

14: else if 𝑑 ≠ 𝑑𝜉 [𝑡] then
15: A𝑘(𝑑) [𝑡 + 1] = A𝑘(𝑑) [𝑡], E

𝑘
(𝑑) [𝑡 + 1] = E𝑘(𝑑) [𝑡];

16: end if
17: On Server Node:
18: Receive 𝚫

𝑘
(𝑑𝜉 [𝑡])

[𝑡] from all client nodes; Broadcast A𝑔(𝑑𝜉 [𝑡])
[𝑡 +

1] = A𝑔(𝑑𝜉 [𝑡])
[𝑡] − 1

𝐾

∑𝐾
𝑘=1

𝚫
𝑘
(𝑑𝜉 [𝑡])

[𝑡] to all client nodes;

19: end for

factors except the 𝑑-th, i.e. H𝑑 = A(𝐷) ⊙ ... ⊙ A(𝑑+1) ⊙ A(𝑑−1) ... ⊙
A(1) ; and Y<𝑑> is the 𝑑-unfolding of the element-wise partial gra-

dient Y ∈ R𝐼1×...×𝐼𝐷 , where Y(𝑖) = 𝜕𝑓 (A(𝑖),X(𝑖))
𝜕A(𝑖) , for all 𝑖 ∈ I. We

approximate ∇A(𝑑) 𝐹 (A) by sampling |S| fibers (i.e. |S| columns of

Y(𝑑)) and the corresponding |S| rows of H𝑑 , where S denotes the

index of the sampled fibers. The stochastic partial gradient is then

G(𝑑) [𝑡] = Y<𝑑> (:,S)H𝑑 (S, :), (3)

where both Y<𝑑> (:,S) and H𝑑 (S, :) can be efficiently computed,

because: 1) the computation of Y<𝑑> (:,S) only involves 𝐼𝑑 × |S|
element-wise partial gradient computation [22] and 2) the computa-

tion ofH𝑑 (S, :) can be obtained without forming the full Khatri-Rao

product of H𝑑 [32]. For the 𝑠-th row of H𝑑 , its index (𝑖𝑠
1
, ..., 𝑖𝑠

𝐷
) can

be obtained by the index mapping in Section 2.1. Then, H(𝑠, :) =
A(1) (𝑖𝑠1, :) ⊛ ... ⊛A(𝑑−1) (𝑖𝑠𝑑−1, :) ⊛A(𝑑+1) (𝑖𝑠𝑑+1, :) ⊛ ... ⊛A(𝐷) (𝑖𝑠𝐷 , :),
where ⊛ is the Hadamard product. Finally, the local stochatic gra-

dient G𝑘(𝑑) [𝑡] can be efficiently computed by substituting its local

tensor partition Y𝑘 and local factors A𝑘(𝑑) into eq.(3), which gives

G𝑘(𝑑) [𝑡] = Y𝑘
<𝑑>

(:,S)H𝑘
𝑑
(S, :), (4)

whereH𝑘 (𝑠, :) = A𝑘(1) (𝑖
𝑠
1
, :)⊛ ...⊛A𝑘(𝑑−1) (𝑖

𝑠
𝑑−1, :)⊛A

𝑘
(𝑑+1) (𝑖

𝑠
𝑑+1, :)⊛

...⊛A𝑘(𝐷) (𝑖
𝑠
𝐷
, :). According to the complexity analysis, our gradient

computation in eq.(4) matches the state-of-the-art efficiency of GTF

computation, e.g., [10].

4 ALGORITHM ANALYSIS
This section presents the convergence analysis and complexity

analysis of FedGTF-EF and FedGTF-EF-PC. A proof sketch of the

convergence analysis is provided in the appendix.

4.1 Convergence Analysis
Assumptions. In order to analyze the convergence, we make the

following assumptions which are common to many machine learn-

ing problems [4, 10, 34, 42]. Let the randomness of computing

stochastic gradient of G(𝑑𝜉 [𝑡]) [𝑡] be 𝜁 [𝑡], the randomness of sam-

pling the block be 𝜉 [𝑡], the filtration upon iteration 𝑡 be F [𝑡] =

{𝜁 [0], 𝜉 [0], ..., 𝜁 [𝑡 − 1], 𝜉 [𝑡 − 1]}.

Assumption 4.1. (Block-wise Smoothness of the Loss Function)
𝐹 (·) is𝐿(𝑑) -block-wise smooth, for𝑑 = 1, ..., 𝐷 , i.e. for allA,B, 𝐹 (B) ≤
𝐹 (A) + ⟨∇A(𝑑) ,B(𝑑) − A(𝑑) ⟩ +

𝐿(𝑑)
2

∥B(𝑑) − A(𝑑) ∥2𝐹 .

Assumption 4.2. (Unbiased Gradient Estimation) The stochastic
gradient is unbiased:E𝜁 [𝑡]

[
G𝑘
𝑑𝜉 [𝑡]

[𝑡]
���F [𝑡], 𝜉 [𝑡]

]
= ∇A(𝑑𝜉 [𝑡])

𝐹 (A[𝑡]).

Assumption 4.3. (Bounded Variance) The stochastic gradient has
bounded variance:
E𝜁 [𝑡]

[

G𝑘(𝑑𝜉 [𝑡]) [𝑡] − ∇A(𝑑𝜉 [𝑡])
𝐹 (A[𝑡])

2
𝐹

���F [𝑡], 𝜉 [𝑡]
]
≤ 𝜎2

𝑑
.

Assumption 4.4. (Bounded Gradient) ∥∇A(𝑑) 𝐹 (A[𝑡])∥2
𝐹
≤ 𝜔2

𝑑
.

Assumption 4.5. (𝛿-approximated Compression [19]) An operator
Compress : R𝑑 → R𝑑 is an 𝛿-approximate compressor for 𝛿 ∈ (0, 1]
if ∥Compress(x) − x∥2

2
≤ (1 − 𝛿)∥x∥2

2
.

Many compressors satisfy the above condition [4]: top-k or ran-

dom k-sparsification, stochastic k-level quantization, stochastic

rotated quantization and the Sign compressor in Definition 2.3.

Assumption 4.6. (Simple Regularization Function) The regular-
ization functions 𝑟𝑑 (·),𝑑 = 1, ..., 𝐷 , are convex, lower semi-continuous
and admit closed-form proximal operator:
Prox𝑟𝑑 (B𝑑) = argminA(𝑑)

1

2
∥A(𝑑) − B(𝑑) ∥2𝐹 + 𝑟𝑑 (A(𝑑)).

Many common regularizations satisfy this assumption, for exam-

ple, the ℓ1-norm for inducing sparsitywhich has the soft-thresholding

operator as its proximal operator.

4.1.1 Convergence Analysis of Algorithm 1.

Smooth regularization case. To prove the convergence, we ex-

tend the delayed gradient perspective in [19] to our block ran-

domized setting by introducing the following virtual variables

only for the proof: Ã(𝑑) [𝑡] := A(𝑑) [𝑡] − 1

𝐾

∑𝐾
𝑘=1

E𝑘(𝑑) [𝑡] . Then,
we have the following virtual recurrence: if 𝑑 = 𝑑𝜉 [𝑡], Ã(𝑑) [𝑡 +1] =
A(𝑑) [𝑡 + 1] − 1

𝐾

∑𝐾
𝑘=1

E(𝑑) [𝑡 + 1] = Ã(𝑑) [𝑡] −𝛾 [𝑡] 1

𝐾

∑𝐾
𝑘=1

G𝑘(𝑑) [𝑡];
else if 𝑑 ≠ 𝑑𝜉 [𝑡] , Ã(𝑑) [𝑡 + 1] = Ã(𝑑) [𝑡]. Thus, the recurrence

can be viewed as the block randomized SGD with the variable

Ã(𝑑) [𝑡] which corresponds to A(𝑑) [𝑡] with delayed information

1

𝐾

∑𝐾
𝑘=1

E𝑘(𝑑) [𝑡] added. The convergence of Algorithm 1 applied to

the smooth smooth regularization is as follows.

Theorem 4.1. Suppose that Assumptions 4.1-4.5 hold.
Let (A(1) [𝑡], ...,A(𝐷) [𝑡]) be the iterates of Algorithm 1 with Line 8.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jing Ma, Qiuchen Zhang, Jian Lou*, Li Xiong, Joyce C. Ho

Let 𝛾 = min{ 1

2𝐿
,

𝜚
√
𝑇+1/

√
𝐾+ (1−𝛿)1/3

𝛿2/3
𝑇 1/3

}, for some 𝜚 > 0. We have

E[1
𝐷

𝐷∑
𝑑=1

∥∇A(𝑑) 𝐹 (A[Output]) ∥2𝐹]

≤ 8𝐿

𝑇 + 1

(𝐹 (A[0]) − 𝐹 ∗) +
[
4

𝜚
(𝐹 (A[0]) − 𝐹 ∗) + 2𝐿𝜎2𝜚

𝐷

]
1√

𝑀 (𝑇 + 1)

+
[
4

𝜚
(𝐹 (A[0]) − 𝐹 ∗) + 8𝐿2𝜚 2 (𝜎2 +𝜔2)

𝐷

] (1 − 𝛿)1/3

𝛿2/3 (𝑇 + 1)2/3
,

where A[Output] = (A(1) [Output], ...,A(𝐷) [Output]) is sampled
from A[0] to A[𝑇] with uniform distribution, 𝐹 ∗ is the optimal value,
𝜎2 =

∑𝐷
𝑑=1

𝜎2
𝑑
and 𝜔2 =

∑𝐷
𝑑=1

𝜔2

𝑑
.

Remark 1. Under the similar assumptions, our convergence rate

matches the rates of the distributed synchronize SGD and the dis-

tributed SGD with gradient compression and error-feedback [42].

Thus, we can further reduce computation and uplink communica-

tion from a full-length gradient update and communication [4, 42]

to a single randomized block of the partial gradient update and

communication without slowing down the convergence rate.

Nonsmooth regularization case. This case corresponds to the

execution of Line 9 in Algorithm 1. An appropriate optimally con-

dition is based on the generalized gradient measure [10, 29, 30, 38]:

G̃(𝑑) [𝑡] = 1

𝛾 [𝑡] (A(𝑑) − Prox𝛾 [𝑡],𝑟𝑑 (A(𝑑) [𝑡] −𝛾 [𝑡]∇A(𝑑) 𝐹 (A[𝑡]))).
The following theorem shows the convergence of Algorithm 1 for

the nonsmooth regularization case.

Theorem 4.2. Suppose that Assumptions 4.1-4.6 hold.
Let (A(1) [𝑡], ...,A(𝐷) [𝑡]) be the iterates of Algorithm 1 with proximal
operator (Line 9). Assume 𝛾 [𝑡] = 1

4𝐿
. We have

E
[𝐷∑
𝑑=1

1

𝐷
∥G̃(𝑑) [Output] ∥2𝐹

]
≤ 16𝐿

𝑇 + 1

(Φ(A[0]) − Φ∗)

+ 4𝜎2

𝐷𝐾
+ 32(1 − 𝛿)

𝐷𝛿2
(𝜎2 + 𝜔2),

(5)

where A[Output] is sampled from A[0] to A[𝑇] with uniform distri-
bution, Φ(A[0]) = 𝐹 (A[0]) +∑𝐷

𝑑=1
𝑟𝑑 (A[0]) and Φ∗ is the optimal

value.

Remark 2. In the nonsmooth regularization case, the above con-

vergence result is weaker than the previous smooth case in that we

only ensure the difference between the initial loss and the optimal

value will get smaller, but the generalized gradient is not guaranteed

to approach 0 given that the variance and gradient norm related

terms will dominate with increasing 𝑇 . However, our empirical

results show that the algorithm is able to converge to small losses.

4.1.2 Convergence Analysis of Algorithm 2. Now, we provide the
convergence rate of Algorithm 2 by extending the proof in [4] to

the block randomized setting, which is obtained under the same

assumptions with Theorem 4.1. The main idea for the analysis

is to introduce the virtual sequence of Ã𝑎𝑣𝑔(𝑑) [𝑡 + 1] = Ã𝑎𝑣𝑔(𝑑) [𝑡] −
𝛾 [𝑡] 1

𝐾

∑𝑅
𝑘=1

𝐺𝑘(𝑑) [𝑡] and build an iterative descent relation for it.

Meanwhile, we keep track of the error between the true and vir-

tual averages of A𝑎𝑣𝑔(𝑑) [𝑡] − Ã𝑎𝑣𝑔(𝑑) [𝑡], and the deviation between the

local variables and the true average of A𝑎𝑣𝑔 [𝑡] − A𝑘 [𝑡]. Since both

deviations are well-bounded, it means A𝑘 [𝑡],A𝑎𝑣𝑔 [𝑡], Ã𝑎𝑣𝑔(𝑑) [𝑡] are
close to each other. Finally, we can obtain the convergence result

for the true sequence A𝑘 [𝑡] by substituting the deviations into the

descent relation obtained for Ã𝑎𝑣𝑔(𝑑) [𝑡].

Theorem 4.3. Suppose that Assumptions 4.1-4.5 hold. Let
(A𝑘(1) [𝑡], ...,A

𝑘
(𝐷) [𝑡]) be the iterates of Algorithm 2, for 𝑘 = 1, ..., 𝐾

and 𝑡 = 0, ...,𝑇 . Let 𝛾 [𝑡] = 𝐶√
𝑇+1

with 0 < 𝐶 ≤ 1

𝐿
. We have

E[
𝐷∑
𝑑=1

1

𝐷
∥∇A(𝑑) 𝐹 (A[Output]) ∥2𝐹] ≤ (4𝐶 [𝐹 (A[0]) − 𝐹 ∗] + 2𝐶𝐿𝜎2) 1

√
𝑇 + 1

+
(
32𝐶2𝐿2 (1 − 𝛿2) (𝜎2 +𝜔2)

𝐷𝛿2
+ 8𝐶2𝐿2 (𝜎2 +𝜔2)

𝐷𝐾

) 𝜏2

𝑇 + 1

,

where A[Output] = (A(1) [Output], ...,A(𝐷) [Output]) is sampled
from A𝑘 [0] to A𝑘 [𝑇], for all 𝑘 = 1, ..., 𝐾 , with uniform distribution,
𝐹 ∗ is the optimal value, 𝜎2 =

∑𝐷
𝑑=1

𝜎2
𝑑
and 𝜔2 =

∑𝐷
𝑑=1

𝜔2

𝑑
.

Remark 3. Algorithm 2 maintains the same convergence rate of

𝑂 (1√
𝑇+1

) as Algorithm 1, despite the periodic communication. The

communication gap 𝜏 only affects the term with order 𝑂 (1

𝑇+1),
which is insignificant compared to the 𝑂 (1√

𝑇+1
) overall conver-

gence rate. Thus, without increasing the iteration complexity, the

periodic communication can further reduce communication cost.

4.2 Complexity Analysis
We provide the computation, storage and communication com-

plexities for FedGTF-EF and FedGTF-EF-PC given |S| fibers being
sampled by each client and the rank of the GTF being 𝑅.

Computational Complexity. Our method is very efficient when

compared to the following methods: 1) the classic CP-ALS and the

full gradient descent-based GTF, which cost 𝑂 (𝐷𝑅∏𝐷
𝑑=1

𝐼𝑑); 2) the
sampled randomized CP-ALS in [5] and SGD-based GTF in [15] with

the same number of elements sampled, which cost𝑂 (𝑅S|∑𝐷
𝑑=1

𝐼𝑑);
and 3) the same complexity as the full precision block randomized

SGD-based TF [10].

Theorem 4.4. The per-iteration computational complexity of Al-
gorithm FedGTF-EF and FedGTF-EF-PC for each client is
𝑂 (1

𝐷
(∑𝐷

𝑑=1
𝐼𝑑)𝑅 |S|).

Communication Complexity. Assume we are using the Sign
compressor and comparing with full precision distributed SGD

with all blocks communicated. Let 𝐷 = 4, 𝜏 = 8, FedGTF-EF and

FedGTF-EF-PC reduces up to 99.22% and 99.90% uplink commu-

nications. In general, we have:

Theorem 4.5. FedGTF-EF reduces up to 1 − 1

32𝐷
uplink commu-

nication and FedGTF-EF-PC reduces up to 1 − 1

32𝐷𝜏
uplink commu-

nication.

Storage Complexity. The fiber sampling based stochastic partial

gradient avoids forming the whole element-wise partial gradient

tensor Y, which reduces the storage for this step from 𝑂 (∏𝐷
𝑑=1

𝐼𝑑)
to 𝑂 (|S| 1

𝐷

∑𝐷
𝑑=1

𝐼𝑑), thus achieving the same cost efficiency with

sampling-based random CP-ALS [5], full precision SGD [15] and

block randomized full precision SGD [10].

Communication Efficient Federated Generalized Tensor Factorization for Collaborative Health Data Analytics WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

GCP

BrasCPD

DPFact

DPFact-prox

TRIP

FlexiFact

FedGTF-EF

Centralized FedGTF-EF

Centralized FedGTF-EF-cyclic

Centralized FedGTF-EF-prox

FedGTF-EF-cyclic

FedGTF-EF-prox
FedGTF-EF-PC (=2)

FedGTF-EF-PC (=4)

FedGTF-EF-PC (=6)

FedGTF-EF-PC (=8)

10
1

10
2

10
3

10
4

Time (seconds)

10
6

10
8

10
10

10
12

L
o

g
it
 L

o
s
s

10
4

10
5

10
6

10
7

10
8

Communication Cost (bytes)

10
6

10
8

10
10

10
12

L
o

g
it
 L

o
s
s

10
0

10
1

10
2

10
3

10
4

Time (seconds)

10
7

10
8

10
9

10
10

S
q
u

a
re

 L
o

s
s

10
5

10
10

Communication Cost (bytes)

10
7

10
8

10
9

10
10

S
q
u
a
re

 L
o
s
s

10
2

10
4

10
6

Time (seconds)

10
8

10
10

10
12

10
14

L
o

g
it
 L

o
s
s

10
4

10
6

10
8

Communication Cost (bytes)

10
10L

o
g

it
 L

o
s
s

10
5

Time (seconds)

10
5

S
q
u
a
re

 L
o
s
s

10
6

10
8

10
10

Communication Cost (bytes)

10
5

S
q

u
a

re
 L

o
s
s

10
2

10
4

10
6

Time (seconds)

10
10

10
12

10
14

L
o
g
it
 L

o
s
s

10
4

10
6

10
8

Communication Cost (bytes)

10
10L

o
g

it
 L

o
s
s

10
2

10
4

10
6

Time (seconds)

10
8

10
9

10
10

S
q
u
a
re

 L
o
s
s

10
6

10
8

10
10

Communication Cost (bytes)

10
8

10
9

10
10

S
q
u
a
re

 L
o
s
s

Figure 4: Loss decrease with respect to 1) computation time measured by seconds (column 1, 3 for Bernoulli Logit Loss and
Least Square Loss respectively); 2) uplink communication cost measured by number of bytes (column 2, 4 for Bernoulli Logit
Loss and Least Square Loss respectively). Top: 3-rd order CMS; Middle: 4-th order CMS; Bottom: MIMIC-III.

5 EXPERIMENT
5.1 Experimental Setup
Datasets. We consider two real-world EHR datasets

1
, as well as a

synthetic dataset, which are introduced below,

i). CMS [1] : A publicly available healthcare dataset with patients’

information protected. We adopt the rules in [20] to select the top

500 frequently observed diagnoses, procedures, and medications

to form a 4th order tensor of size 125, 961 × 500 × 500 × 500 and a

3rd order tensor of size 91999 × 500 × 500 (with medication mode

omitted).

ii). MIMIC-III [16] : It is a publicly available relational dataset that
describes the patients information of the Intensive Care Units (ICUs).

Similar to CMS dataset, we form a 4 mode tensor representing

patients-diagnoses-procedures-medications with size 34, 272×500×
500 × 500.

iii). Synthetic data : Synthetic data with size 4000×500×500×500
is generated as follows: for the nonzero entries, their values are

sampled from uniform distribution for the least square loss setting

and from binomial distribution for the logit loss setting, while

positions of the non-zero entries are the same for both loss settings

which are uniformly sampled from all entries with 10
−4

non-zero

ratio.

Algorithms for comparison.We consider two different loss func-

tions: the Bernoulli logit loss 𝑓𝑙𝑜𝑔𝑖𝑡 and the least square loss. For

the Bernoulli logit loss, we compare with: i) GCP (centralized)

[22]; ii) BrasCPD (centralized) [10]; iii) Centralized versions of
FedGTF-EF, iv) FedGTF-EF-cyclic and v) FedGTF-EF-prox. For

1
Code available at: https://github.com/jma78/FedGTF-EF

BrasCPD

DistBrasCPD

DistBrasCPD-comp

DistSGD-EF

DistSGD-EF-comp

FedGTF-EF
FedGTF-EF-PC (=2)

FedGTF-EF-PC (=4)

FedGTF-EF-PC (=6)

FedGTF-EF-PC (=8)

10
1

10
2

10
3

10
4

Time (seconds)

10
6

10
8

10
10

10
12

L
o
g
it
 L

o
s
s

10
4

10
6

10
8

Communication Cost (bytes)

10
6

10
8

10
10

10
12

L
o
g
it
 L

o
s
s

Figure 5: Ablation Study on 3-rd order CMS for Bernoulli
Logit Loss.
the least square loss, we compare with: i) BrasCPD (centralized)

[10]; ii) FlexiFact [6, 12]: a distributed tensor factorization algo-

rithm; iii) TRIP [20]: a federated tensor factorization algorithm op-

timized with ADMM, which has deterministic per-iteration update

solved in closed-form; iv) DPFact [27]: a federated SGD algorithm

designed for collaborative tensor factorization. For fair comparison,

we remove the differential privacy part of DPFact and substitute

the 𝑙2,1 regularization with the 𝑙1 regularization as a new variant,

DPFact-prox.

Ablation study. We conduct ablation studies to illustrate the con-

tribution of each communication reduction mechanism to the over-

all communication efficiency, which includes i) DistBrasCPD: the

distributed version of BrasCPD [10] or FGTF with only the block-

randomized technique; ii) DistBrasCPD-comp: FGTF with both

block-randomized and gradient compression techniques; iii) DistSGD-

EF: distributed SGD with error-feedback that communicates full

gradients and all blocks; iv) DistSGD-EF-comp: DistSGD-EF with

gradient compression. Table 2 summarize the comparison with the

proposed algorithms.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jing Ma, Qiuchen Zhang, Jian Lou*, Li Xiong, Joyce C. Ho

Table 2: Comparison of algorithms in ablation study.

Algorithm Element-level Reduction Block-level Reduction Round-level Reduction Convergence Guarantee Compression Ratio
DistBrasCPD ✗ ✓ ✗ ✗ 1 − 1/𝐷
DistBrasCPD-comp ✓ ✓ ✗ ✗ 1 − 1/32𝐷
DistSGD-EF ✗ ✗ ✗ ✗ 0

DistSGD-EF-comp ✓ ✗ ✗ ✗ 1 − 1/32
FedGTF-EF ✓ ✓ ✗ ✓ 1 − 1/32𝐷
FedGTF-EF-PC ✓ ✓ ✓ ✓ 1 − 1/32𝐷𝜏

FedGTF-EF

FedGTF-EF-prox
FedGTF-EF-PC (=2)

FedGTF-EF-PC (=4)

FedGTF-EF-PC (=6)

FedGTF-EF-PC (=8)

10
1

10
2

Time (seconds)

10
6

10
8

10
10

10
12

L
o

g
it
 L

o
s
s

10
1

10
2

Time (seconds)

10
6

10
8

10
10

10
12

L
o

g
it
 L

o
s
s

Figure 6: Comparison of different number of workers on 3-
rd order CMS for Bernoulli Logit Loss.

-40 -20 0 20 40

-40

-20

0

20

40
4

5

10

-40 -20 0 20 40

-40

-20

0

20

40

4

5

10

Figure 7: tSNE visualization of the patient representa-
tion learned by BrasCPD (left) and FedGTF-EF-PC(𝜏 =

8) (right). Each point represents a patient which is
colored according to the highest-valued coordinate in
the patient representation vector among the top 3 phe-
notypes extracted based on the factor weights 𝜆𝑟 =

A(1) (:, 𝑟)

𝐹

A(2) (:, 𝑟)

𝐹
· · ·

A(𝐷) (:, 𝑟)

𝐹
.

For our proposed algorithms, in addition to FedGTF-EF and

FedGTF-EF-PC, we consider two variants: FedGTF-EF-cyclic (a

variant of FedGTF-EF with cyclic mode updates), FedGTF-EF-prox

(FedGTF-EF with 𝑙1 regularization). We vary the value of 𝜏 in

{2, 4, 6, 8} for FedGTF-EF-PC.
Experiment results. Our experiments show that FedGTF-EF and

FedGTF-EF-PC are able to greatly improve the communication effi-

ciency without slowing down the convergence and deteriorating

the factorization quality. In detail, we have the following four obser-

vations: i) FedGTF-EF and its variants reduce loss faster with much

less communication cost, for both the Bernoulli Logit Loss (Fig.4

first two columns) and the Least Square loss (Fig.4 last two columns)

compared to the baseline methods. The communication cost per

communication round is further reduced by increasing the local

update iterations 𝜏 from 2 to 8 without hurting the performance

of the Bernoulli logit loss and with a slightly worse loss for the

least square loss. ii) FedGTF-EF, FedGTF-EF-PC and their variants

are computationally efficient due to the fiber-sampling technique,

i.e., they use lower computation cost compared to the baselines. By

Fig.4, for both objective functions, FedGTF-EF-PC, FedGTF-EF and

its variants converges to similar losses as their centralized counter-

parts, while cost less time because more workers are involved in the

updating process for the federated setting. Note that although TRIP

converges faster in terms of time, but it tends to be trapped into bad

local minima caused potentially by its deterministic per-iteration

update. iii) FedGTF-EF, FedGTF-EF-PC and their variants converge

Table 3: Top 3 phenptypes extracted by FedGTF-EF-PC(𝜏 = 8)
on MIMIC-III data. Red, blue, and green indicate diagnoses,
procedures, and medication, respectively.

P10: Diabetic Heart Failure
Diabetes mellitus without mention of complication

Background diabetic retinopathy

Acute systolic heart failure

Acute on chronic systolic heart failure

Chronic diastolic heart failure

Acute on chronic combined systolic and diastolic heart failure

Insertion of one vascular stent

Open heart valvuloplasty of tricuspid valve without replacement

Operations on other structures adjacent to valves of heart

(Aorto)coronary bypass of three coronary arteries

Captopril (ACE inhibitor), Insulin, Pyridostigmine Bromide,

Isosorbide Dinitrate

P5: Hypertensive Heart Failure
Pure hypercholesterolemia

Cardiac tamponade

Ventricular fibrillation

Cardiac arrest

Acute systolic heart failure

Percutaneous insertion of carotid artery stent(s)

Pericardiocentesis

Extracorporeal circulation auxiliary to open heart surgery

Other endovascular procedures on other vessels

Rosuvastatin Calcium, Isosorbide Dinitrate, Hydrochlorothiazide,

Digoxin, Clonidine HCl

P4: Peripheral Arterial Disease
Congestive heart failure

Atherosclerosis of native arteries of the extremities

– with intermittent claudication

Acute venous embolism and thrombosis of

–superficial veins of upper extremity

Insertion of drug-eluting coronary artery stent(s)

(Aorto)coronary bypass of two coronary arteries

Interruption of the vena cava

Suture of artery

Angioplasty of other non-coronary vessel(s)

Carvedilol, Metoprolol succinate, Amiodarone HCl, Nitroglycerin,

Calcium Chloride

Communication Efficient Federated Generalized Tensor Factorization for Collaborative Health Data Analytics WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

to similar losses as the centralized counterpart, which indicates

communication efficiency can be improved without sacrificing the

factorization quality. iv) FedGTF-EF and FedGTF-EF-PC converge

faster in terms of running time with more workers. As shown in

Fig.4 upper left and Fig.6, with the number of workers increased

from 8 to 16, the time for FedGTF-EF to converge reduces 65.58%.

From the ablation study (Fig.5), we can see: i) Block-randomized

update and gradient compression can greatly reduce the communi-

cation cost by 75.00% and 96.88%, respectively. Therefore, gradient

compression plays a more important role in communication reduc-

tion. ii) With both block-randomized and gradient compression,

FedGTF-EF achieves a gradient reduction of 98.90% over FGTF. iii)
Periodic communication further reduces the communication cost

over FGTF by 99.94%, 99.97, 99.98%, and 99.99% with {2, 4, 6, 8}
rounds of local communications respectively.

Finally, we evaluate the quality of the federated factorization

factors by considering the patient subgroup identification following

[28], as illustrated in Fig.7. We use tSNE to map the 𝑅 dimensional

vectors into the 2 dimensional space. We first identify the top 3

phenotypes that have the largest factor weights, which are the

phenotypes #4, #5, #10 in Fig.7 (phenotype details are shown in

Table 3). Then, we color the patients by assigning each patient to

one of the top 3 phenotypes using the largest patient weight among

the top 3 along the representation vector. Fig.7 shows FedGTF-

EF-PC with 𝜏 = 8 local updates has comparable performance to

the centralized baseline BrasCPD in clustering the patients with

the same phenotype together. This demonstrates that our method

can achieve communication compression without sacrificing the

factorization quality.

6 CONCLUSION
In this paper, we study the under explored communication efficiency

problem in federated (more broadly the distributed) generalized

tensor factorization for collaborative phenotyping. We propose

FedGTF-EF with communication efficient designs of block random-

ized update and gradient compression with error-feedback, which

encompassed two levels of uplink communication reduction: re-

duced number of blocks and reduced per-element communication.

We further reduce the communication rounds by periodic averaging

to develop the FedGTF-EF-PC algorithm. The convergence guar-

antee is provided under common assumptions applied not only to

generalized tensor factorization problems but also to more general

machine learning problems possessing a multi-block structure. Our

algorithm can maintain low computational and storage complex-

ity while occupying much lower uplink communication cost. We

demonstrate its superior efficiency and uncompromised quality on

synthetic and two real-world EHR datasets.

ACKNOWLEDGMENTS
We sincerely thank all anonymous reviewers for their valuable

comments. This work was supported by the National Science Foun-

dation, awards IIS-#1838200 and CNS-1952192, National Institutes

of Health (NIH) awards R01GM118609, 5K01LM012924, and CTSA

UL1TR002378.

APPENDIX
A ADDITIONAL MATERIALS FOR

EXPERIMENTS
A.1 Parameter Settings
For MIMIC-III, CMS and synthetic datasets, each algorithm is run

for 500 iterations per epoch until converge, while for delicious

dataset, each algorithm is run for 1000 iterations per epoch. For

GCP algorithm, we tune the stepsize within the range of

{10−8, 10−9, 10−10, 10−11}, while for the rest algorithms, we tune

the stepsize by grid search through {22, 21, 20, 2−1, 2−2, ..., 2−11}.
The parameter for the proximal operator is set to 10

−4
for all the

algorithms with the proximal operators (FedGTF-EF-prox, DPFact-

prox). For all the federated algorithms, we by default horizontally

partition the tensor (along 𝐼1 mode) into 8 tensors without overlap-

ping and distribute each of them to 8 client nodes respectively. We

also test different numbers of workers (16 workers and 32 workers),

where the stepsizes are set to the same as for 8 workers. The best

stepsizes for each algorithms for different datasets are set as in

Table 4 and 5.

Each experiment is averaged over 5 repetitions. All experiments

are run on Matlab 2019a on an r5.12xlarge instance of AWS EC2

with Tensor Toolbox Version 3.1 [3].

A.2 Additional Experiments
Two additional groups of figures are presented here. Fig.8 shows

the loss decrease for both the Bernoulli loss and the Least Square

loss with respect to time and communication for the synthetic data.

Fig.9 shows the Bernoulli loss and the Least Square loss decrease

with respect to epochs in supplementary to the figures showed in

the main paper with respects to time and communication. Similar

conclusions can be drawn with the real-world EHR datasets in the

main paper. That is, the proposed algorithms achieve more efficient

convergence than the centralized baselines under the Bernoulli

Table 4: Best Stepsizes for the Bernoulli Logit Loss

Algorithm MIMIC-III 4th order CMS 3rd order CMS Synthetic
GCP 10

−10
10

−10
10

−10
10

−9

BrasCPD 2
−4

2
−1

2
−4

2
−5

Centralized FedGTF-EF 2
−3

2
−1

2
−2

2
−4

Centralized FedGTF-EF-cyclic 2
−2

2
−2

2
−2

2
−4

Centralized FedGTF-EF-prox 2
−2

2
−0

2
−2

2
−2

FedGTF-EF 2
−3

2
−2

2
−2

2
−4

FedGTF-EF-cyclic 2
−4

2
−2

2
−2

2
−4

FedGTF-EF-prox 2
−2

2
−3

2
−4

2
−1

FedGTF-EF-PC(𝜏 = 2) 2
−5

2
−5

2
−2

2
−4

FedGTF-EF-PC(𝜏 = 4) 2
−5

2
−5

2
−2

2
−4

FedGTF-EF-PC(𝜏 = 6) 2
−5

2
−5

2
−2

2
−4

FedGTF-EF-PC(𝜏 = 8) 2
−5

2
−5

2
−2

2
−4

Table 5: Best Stepsizes for the Least Square Loss

Algorithm MIMIC-III 4-th order CMS 3-rd order CMS Synthetic
BrasCPD 2

−5
2
0

10
−4

2
−2

FlexiFact - - 2 -

DPFact 2
−4

2
1

2
−10

2
−2

DPFact-prox 2
−4

2
1

2
−10

2
−2

FedGTF-EF 2
−4

2
0

2
−11

2
−2

FedGTF-EF-prox 2
−5

2
0

2
−10

2
−2

FedGTF-EF-PC(𝜏 = 2) 2
−4

2
0

2
−10

2
−2

FedGTF-EF-PC(𝜏 = 4) 2
−4

2
0

2
−10

2
−2

FedGTF-EF-PC(𝜏 = 6) 2
−4

2
0

2
−10

2
−2

FedGTF-EF-PC(𝜏 = 8) 2
−4

2
0

2
−10

2
−2

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jing Ma, Qiuchen Zhang, Jian Lou*, Li Xiong, Joyce C. Ho

GCP

BrasCPD

DPFact

DPFact-prox

TRIP

FlexiFact

FedGTF-EF

Centralized FedGTF-EF

Centralized FedGTF-EF-cyclic

Centralized FedGTF-EF-prox

FedGTF-EF-cyclic

FedGTF-EF-prox
FedGTF-EF-PC (=2)

FedGTF-EF-PC (=4)

FedGTF-EF-PC (=6)

FedGTF-EF-PC (=8)

10
2

10
4

10
6

Time (seconds)

10
8

10
10

10
12

L
o

g
it
 L

o
s
s

FedGTF-EF-topK

10
4

10
6

10
8

10
10

Communication Cost (bytes)

10
10L

o
g

it
 L

o
s
s

FedGTF-EF-topK

10
2

10
4

10
6

Time (seconds)

10
7

10
8

S
q
u
a
re

 L
o
s
s

FedGTF-EF-topK

10
5

10
10

Communication Cost (bytes)

10
7

10
8

S
q
u

a
re

 L
o

s
s

FedGTF-EF-topK

Figure 8: Bernoulli Logit Loss and Square Loss with respect to computation time and communication for synthetic data.
GCP

BrasCPD

DPFact

DPFact-prox

TRIP

FlexiFact

FedGTF-EF

Centralized FedGTF-EF

Centralized FedGTF-EF-cyclic

Centralized FedGTF-EF-prox

FedGTF-EF-cyclic

FedGTF-EF-prox
FedGTF-EF-PC (=2)

FedGTF-EF-PC (=4)

FedGTF-EF-PC (=6)

FedGTF-EF-PC (=8)

10
-1

10
0

10
1

Epoch

10
6

10
8

10
10

10
12

L
o

g
it
 L

o
s
s

10
-2

10
-1

10
0

10
1

10
2

Epoch

10
7

10
8

10
9

10
10

S
q
u

a
re

 L
o

s
s

10
-1

10
0

10
1

10
2

Epoch

10
8

10
10

10
12

10
14

L
o

g
it
 L

o
s
s

10
-2

10
-1

10
0

10
1

10
2

Epoch

10
5

S
q
u
a
re

 L
o
s
s

10
-1

10
0

10
1

10
2

Epoch

10
10

10
12

10
14

L
o

g
it
 L

o
s
s

10
-2

10
-1

10
0

10
1

Epoch

10
8

10
9

10
10

S
q

u
a

re
 L

o
s
s

10
-1

10
0

10
1

Epoch

10
8

10
10

10
12

L
o

g
it
 L

o
s
s

FedGTF-EF-topK

10
-1

10
0

10
1

10
2

Epoch

10
7

10
8

S
q
u
a
re

 L
o
s
s

FedGTF-EF-topK

Figure 9: Bernoulli logit loss (column 1,2) and Least Square loss (column 3,4) decrease with respect to epochs.

logit loss and the distributed baseline under the least square loss. It

is also more communication-efficient than the algorithms without

gradient compressor (BrasCPD distributed version) and without

the block randomized mechanism (DPFact and its variants).

B CONVERGENCE ANALYSIS OF
ALGORITHM 1

B.1 Proof Sketch of Theorem 4.1
B.1.1 Auxiliary variables for the proof and iterative relation. The
following auxillary variables and virtual iterations are introduced

only for the proof: Ã(𝑑) [𝑡] := A(𝑑) [𝑡] − 1

𝐾

∑𝐾
𝑘=1

E𝑘(𝑑) [𝑡] . Given the

auxiliary variable Ã(𝑑) [𝑡], we have the following iterative relation:

if 𝑑 = 𝑑𝜉 [𝑡] , Ã(𝑑) [𝑡 + 1] = Ã(𝑑) [𝑡] − 𝛾 [𝑡] 1

𝐾

∑𝐾
𝑘=1

G𝑘(𝑑) [𝑡]; else if
𝑑 ≠ 𝑑𝜉 [𝑡] , Ã(𝑑) [𝑡 + 1] = Ã(𝑑) [𝑡].

B.1.2 Additional Lemma. The following lemma extends Lemma 3

in [19] to our block randomized case.

Lemma B.1. (Bounding the expectation of the block-wise feedback
error averaged among client nodes) For 𝑑 = 1, ..., 𝐷 and for 𝑡 = 0, ...,𝑇 ,
assuming constant step size 𝛾 [𝑡] = 𝛾 , we have

E
[
∥ 1
𝐾

𝐾∑
𝑘=1

E𝑘(𝑑) [𝑡 + 1] ∥2𝐹
]
≤ 4(1 − 𝛿)

𝛿2
𝛾2 (𝜎2

𝑑
+ 𝜔2

𝑑
). (6)

B.1.3 Main proof sketch of Theorem 4.1. By block-wise Lipschitz

smoothness assumption of the loss function:

𝐹 (Ã[𝑡 + 1]) ≤ 𝐹 (Ã[𝑡]) − 𝛾 [𝑡] ⟨∇A(𝑑𝜉 [𝑡])
𝐹 (Ã[𝑡]), 1

𝐾

𝐾∑
𝑘=1

G𝑘(𝑑𝜉 [𝑡]) [𝑡] ⟩

+
𝐿𝑑𝜉 [𝑡] (𝛾 [𝑡])

2

2

∥ 1
𝐾

𝐾∑
𝑘=1

G𝑘(𝑑𝜉 [𝑡]) [𝑡] ∥
2

𝐹 .

By Assumption 4.2 that

E𝜁 [𝑡]
[
1

𝐾

∑𝐾
𝑘=1

G𝑘
𝑑𝜉 [𝑡]

[𝑡]
���F [𝑡], 𝜉 [𝑡]

]
= ∇A(𝑑𝜉 [𝑡])

𝐹 (A[𝑡]), we have

E𝜁 [𝑡]
[
∥ 1
𝐾

𝐾∑
𝑘=1

G𝑘(𝑑𝜉 [𝑡]) [𝑡] − ∇A(𝑑𝜉 [𝑡])
𝐹 (A[𝑡]) ∥2𝐹

���F[𝑡], 𝜉 [𝑡]
]

= E𝜁 [𝑡]
[
∥ 1
𝐾

𝐾∑
𝑘=1

G𝑘(𝑑𝜉 [𝑡]) [𝑡] ∥
2

𝐹

���F[𝑡], 𝜉 [𝑡]
]
− ∥∇A(𝑑𝜉 [𝑡])

𝐹 (A[𝑡]) ∥2𝐹 .

(7)

Taking conditional expectation on both sides of eq.(B.1.3) with

respect to filtration F [𝑡] and randomness of 𝜁 [𝑡] during the sto-

chastic gradient computation and plugging eq.(7) in, we have

E𝜁 [𝑡]
[
𝐹 (Ã[𝑡 + 1])

���F[𝑡], 𝜉 [𝑡]
]

≤ 𝐹 (Ã[𝑡]) − 𝛾 [𝑡]
(
1 −

𝐿𝑑𝜉 [𝑡]𝛾 [𝑡]
2

)
∥∇A(𝑑𝜉 [𝑡])

𝐹 (A[𝑡]) ∥2𝐹 +
𝐿𝑑𝜉 [𝑡] (𝛾 [𝑡])

2

2𝐾
𝜎2

𝑑𝜉 [𝑡]

+ 𝛾 [𝑡] ⟨∇A(𝑑𝜉 [𝑡])
𝐹 (A[𝑡]) − ∇A(𝑑𝜉 [𝑡])

𝐹 (Ã[𝑡]), ∇A(𝑑𝜉 [𝑡])
𝐹 (A[𝑡]) ⟩.

Communication Efficient Federated Generalized Tensor Factorization for Collaborative Health Data Analytics WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Webound ⟨∇A(𝑑𝜉 [𝑡])
𝐹 (A[𝑡])−∇A(𝑑𝜉 [𝑡])

𝐹 (Ã[𝑡]),∇A(𝑑𝜉 [𝑡])
𝐹 (A[𝑡])⟩

by Young’s inequality, we have

E𝜁 [𝑡]
[
𝐹 (Ã[𝑡 + 1])

���F[𝑡], 𝜉 [𝑡]
]

≤ 𝐹 (Ã[𝑡]) − 𝛾 [𝑡]
(
1 −

𝐿𝑑𝜉 [𝑡]𝛾 [𝑡] + 𝜌
2

)
∥∇A(𝑑𝜉 [𝑡])

𝐹 (A[𝑡]) ∥2𝐹

+
𝐿𝑑𝜉 [𝑡] (𝛾 [𝑡])

2

2𝐾
𝜎2

𝑑𝜉 [𝑡]
+
𝐿2
𝑑𝜉 [𝑡]

𝛾 [𝑡]

2𝜌
∥ 1
𝐾

𝐾∑
𝑘=1

E𝑘(𝑑𝜉 [𝑡]) [𝑡] ∥
2

𝐹 .

Taking expectation with respect to 𝜉 [𝑡] conditioned on F [𝑡]
and substituting 𝐿 = max{𝐿1, ..., 𝐿𝐷 }, 𝜎2 =

∑𝐷
𝑑=1

𝜎2
𝑑
in, we have

E𝜉 [𝑡]
[
𝐹 (Ã[𝑡 + 1])

���F[𝑡]
]

≤ 𝐹 (Ã[𝑡]) − 𝛾 [𝑡]
(
1 − 𝐿𝛾 [𝑡] + 𝜌

2

)
1

𝐷

𝐷∑
𝑑=1

∥∇A(𝑑) 𝐹 (A[𝑡]) ∥2𝐹

+ 𝐿 (𝛾 [𝑡]𝜎)
2

2𝐾𝐷
+ 𝐿

2𝛾 [𝑡]
2𝜌

1

𝐷

𝐷∑
𝑑=1

∥ 1
𝐾

𝐾∑
𝑘=1

E𝑘(𝑑) [𝑡] ∥
2

𝐹 .

By Lemma B.1 and let 𝛾 [𝑡] = 𝑡 , we have

E𝜉 [𝑡]
[
𝐹 (Ã[𝑡 + 1])

���F[𝑡]
]

≤ 𝐹 (Ã[𝑡]) − 𝛾
(
1 − 𝐿𝛾 + 𝜌

2

)
1

𝐷

𝐷∑
𝑑=1

∥∇A(𝑑) 𝐹 (A[𝑡]) ∥2𝐹

+ 𝐿 (𝛾𝜎)
2

2𝐾𝐷
+ 2𝐿2𝛾3 (1 − 𝛿) (𝜎2 +𝜔2)

𝜌𝐷𝛿2
.

(8)

Taking total expectation with respect to all the random variables in

F [𝑡], and averaging the above from 𝑡 = 0 to𝑇 and letting 𝜌 < 2−𝐿𝛾 ,
𝐹 ∗ the optimal value, we have we have

1

𝑇 + 1

𝑇∑
𝑡=0

E
[
1

𝐷

𝐷∑
𝑑=1

∥∇A(𝑑) 𝐹 (A[𝑡]) ∥2𝐹
]

≤ 1

(𝑇 + 1)𝛾 (1 − 𝐿𝛾+𝜌
2

)

[
𝐹 (A[0]) − 𝐹 ∗

]
+ 1

(1 − 𝐿𝛾+𝜌
2

)

[𝐿𝛾𝜎2

2𝐾𝐷
+ 2𝐿2𝛾2 (1 − 𝛿) (𝜎2 +𝜔2)

𝜌𝐷𝛿2

]
.

(9)

By setting 𝜌 = 1 and using E
[
1

𝐷

∑𝐷
𝑑=1

∥∇A(𝑑) 𝐹 (A[Output])∥2
𝐹

]
≤∑𝑇

𝑡=0
1

𝑇+1E
[
1

𝐷

∑𝐷
𝑑=1

∥∇A(𝑑) 𝐹 (A[𝑡])∥2
𝐹

]
, letting

𝛾 = min{ 1

2𝐿
,

𝜚
√
𝑇+1/

√
𝐾+ (1−𝛿)1/3

𝛿2/3
𝑇 1/3

} for some 𝜚 > 0, we complete

the proof of Theorem 4.1:

E[1
𝐷

𝐷∑
𝑑=1

∥∇A(𝑑) 𝐹 (A[Output]) ∥2𝐹]

≤ 8𝐿

𝑇 + 1

(𝐹 (A[0]) − 𝐹 ∗) +
[
4

𝜚
(𝐹 (A[0]) − 𝐹 ∗) + 2𝐿𝜎2𝜚

𝐷

]
1√

𝑀 (𝑇 + 1)

+
[
4

𝜚
(𝐹 (A[0]) − 𝐹 ∗) + 8𝐿2𝜚 2 (𝜎2 +𝜔2)

𝐷

] (1 − 𝛿)1/3

𝛿2/3 (𝑇 + 1)2/3
.

B.2 Proof Sketch of Theorem 4.2
B.2.1 Auxiliary variables for the proof and iterative relation. We

derive the convergence by regarding the iteration as using inexact

gradient, which is different from the approach used for the smooth

case which is regarded as using delayed variable:

A(𝑑𝜉 [𝑡]) [𝑡 + 1] = Prox
(
A(𝑑𝜉 [𝑡]) [𝑡] −

1

𝐾

𝐾∑
𝑘=1

𝚫
𝑘
(𝑑𝜉 [𝑡])

[𝑡]
)
=

Prox
(
A(𝑑𝑘) [𝑡] − 𝛾 [𝑡]

1

𝐾

𝐾∑
𝑘=1

(
G𝑘(𝑑𝜉 [𝑡]) [𝑡]

+ 1

𝛾 [𝑡] (E
𝑘
(𝑑𝜉 [𝑡])

[𝑡 + 1] − E𝑘(𝑑𝜉 [𝑡]) [𝑡])
))
.

We define the generalized gradient Z[𝑡] = (Z(1) [𝑡], ..., (Z(𝐷) [𝑡]),
whereZ(𝑑) [𝑡] = 1

𝛾 [𝑡]

(
A(𝑑) [𝑡]−Prox𝑟 (𝑑) (A(𝑑) [𝑡]−𝛾 [𝑡]∇A(𝑑) 𝐹 (A[𝑡]))

)
If 𝑑 = 𝑑𝜉 [𝑡], A(𝑑) [𝑡 + 1] = Prox𝑟 (𝑑) (A(𝑑) [𝑡] − 𝛾 [𝑡]∇A(𝑑) 𝐹 (A[𝑡])),
else if 𝑑 ≠ 𝑑𝜉 [𝑡] A(𝑑) [𝑡 + 1] = A(𝑑) [𝑡].

let Φ(A[𝑡]) = 𝐹 (A[𝑡]) + 𝑟 (A[𝑡]).

B.2.2 Additional Lemma. We need Lemma 1 from [30].

Lemma B.2. Let y = Prox𝛾𝑟 (x − 𝛾g), for some g. Then for y, the
following inequality holds for any z,

𝑟 (y) + ⟨y− z, g⟩ ≤ 𝑟 (z) + 1

2𝛾
[∥z−x∥2

2
− ∥y−x∥2

2
− ∥y− z∥2

2
] . (10)

B.2.3 Main Proof sketch of Theorem 4.2. By the block-wise smooth-

ness of 𝐹 , the convexity of 𝑟 (𝑑) (·), and the optimality ofA(𝑑𝜉 [𝑡]) [𝑡+
1] for Prox𝑟 (𝑑) (A(𝑑) [𝑡] − 𝛾∇A(𝑑) 𝐹 (A[𝑡])), we have

Φ(A[𝑡+1]) ≤ Φ(A[𝑡])+(
𝐿(𝑑𝜉 [𝑡])

2

− 1

𝛾 [𝑡])∥A(𝑑𝜉 [𝑡]) [𝑡+1]−A(𝑑𝜉 [𝑡]) [𝑡] ∥
2

𝐹 .

(11)

By Lemma B.2, we have

𝐹 (A(𝑑𝜉 [𝑡]) [𝑡 + 1],A(−𝑑𝜉 [𝑡]) [𝑡]) + 𝑟 (𝑑𝜉 [𝑡]) (A(𝑑𝜉 [𝑡]) [𝑡 + 1])

≤ 𝐹 (A(𝑑𝜉 [𝑡]) [𝑡 + 1],A(−𝑑𝜉 [𝑡]) [𝑡]) + 𝑟 (𝑑𝜉 [𝑡]) (A(𝑑𝜉 [𝑡]) [𝑡 + 1])

+ ⟨A(𝑑𝜉 [𝑡]) [𝑡 + 1] − A(𝑑𝜉 [𝑡]) [𝑡 + 1],∇(𝑑𝜉 [𝑡])𝐹 (A(𝑑𝜉 [𝑡]) [𝑡])

− 1

𝐾

𝐾∑
𝑘=1

(G𝑘(𝑑𝜉 [𝑡]) [𝑡] +
1

𝛾 [𝑡] (E
𝑘
(𝑑𝜉 [𝑡]) [𝑡 + 1] − E(𝑑𝑘

𝜉
[𝑡]) [𝑡]))⟩

+ (
𝐿(𝑑𝜉 [𝑡])

2

− 1

2𝛾 [𝑡])∥A(𝑑𝜉 [𝑡]) [𝑡 + 1] − A(𝑑𝜉 [𝑡]) [𝑡] ∥
2

𝐹

+ (
𝐿(𝑑𝜉 [𝑡])

2

+ 1

2𝛾 [𝑡])∥A(𝑑𝜉 [𝑡]) [𝑡 + 1] − A(𝑑𝜉 [𝑡]) [𝑡] ∥
2

𝐹

− 1

2𝛾 [𝑡] ∥A(𝑑𝜉 [𝑡]) [𝑡 + 1] − A(𝑑𝜉 [𝑡]) [𝑡 + 1] ∥2𝐹 .

By bounding the third row of the above equation, choosing 𝜌1 =

2𝛾 [𝑡] and 𝜌2 = 2, with eq.(11), and letting 𝛾 [𝑡] ≤ 1

2𝐿(𝑑𝜉 [𝑡])
, we have

Φ(A[𝑡 + 1]) ≤ Φ(A[𝑡]) + (𝐿(𝑑𝜉 [𝑡]) −
1

2𝛾 [𝑡]) ∥A(𝑑𝜉 [𝑡]) [𝑡 + 1] − A(𝑑𝜉 [𝑡]) [𝑡] ∥
2

𝐹

+ 𝛾 [𝑡] 1
𝐾

∑
𝑘=1𝐾

∥∇(𝑑𝜉 [𝑡])𝐹 (A(𝑑𝜉 [𝑡]) [𝑡]) − G𝑘(𝑑𝜉 [𝑡]) [𝑡] ∥
2

𝐹

+ 1

𝛾 [𝑡]
1

𝐾

𝐾∑
𝑘=1

∥E𝑘(𝑑𝜉 [𝑡]) [𝑡 + 1] − E𝑘(𝑑𝜉 [𝑡]) [𝑡] ∥
2

𝐹 .

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Jing Ma, Qiuchen Zhang, Jian Lou*, Li Xiong, Joyce C. Ho

Taking conditional expectation with respect to 𝜉 [𝑡] conditioned
on filtration F [𝑡], by Lemma B.1 and letting 𝛾 [𝑡] = 𝑡 , we have

Φ(A[𝑡 + 1]) ≤ Φ(A[𝑡]) + (𝐿 − 1

2𝛾
) 1
𝐷

𝐷∑
𝑑=1

∥∥A(𝑑) [𝑡 + 1] − A(𝑑) [𝑡] ∥2𝐹

+ 𝛾𝜎
2

𝐷
+ 1

𝐷

8(1 − 𝛿)
𝛿2

𝛾 (𝜎2 + 𝜔2) .

Taking total expectation (i.e. with respect to all random variables

in F [𝑡]), averaging from 𝑡 = 0 to 𝑇 and using

E
[∑𝐷

𝑑=1
1

𝐷
∥G̃(𝑑) [Output] ∥2𝐹

]
≤ 1

𝑇+1E[
∑𝐷
𝑑=1

1

𝐷
∥G̃(𝑑) [𝑡] ∥2𝐹]

= 1

𝑇+1E[
∑𝐷
𝑑=1

1

𝐷
∥(A(𝑑) [𝑡 + 1] − A(𝑑) [𝑡])/𝛾 ∥2𝐹], by setting 𝛾 = 1

4𝐿
,

we complete our proof:

E
[𝐷∑
𝑑=1

1

𝐷
∥G̃(𝑑) [Output] ∥2𝐹

]
≤ 16𝐿

𝑇 + 1

(Φ(A[0]) − Φ∗) + 4𝜎2

𝐷𝐾
+ 32(1 − 𝛿)

𝐷𝛿2
(𝜎2 +𝜔2) .

REFERENCES
[1] [n.d.]. https://www.cms.gov/Research-Statistics-Data-and-Systems/

Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and

Brendan McMahan. 2018. cpSGD: Communication-efficient and differentially-

private distributed SGD. In Advances in Neural Information Processing Systems.
[3] Brett W. Bader, Tamara G. Kolda, et al. 2017. MATLAB Tensor Toolbox Version

3.0-dev. Available online. https://gitlab.com/tensors/tensor_toolbox

[4] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. 2019. Qsparse-local-

SGD: Distributed SGDwith Quantization, Sparsification, and Local Computations.

In Advances in Neural Information Processing Systems.
[5] Casey Battaglino, Grey Ballard, and Tamara GKolda. 2018. A practical randomized

CP tensor decomposition. SIAM J. Matrix Anal. Appl. 39, 2 (2018), 876–901.
[6] Alex Beutel, Partha Pratim Talukdar, Abhimanu Kumar, Christos Faloutsos, Evan-

gelos E Papalexakis, and Eric P Xing. 2014. Flexifact: Scalable flexible factorization

of coupled tensors on hadoop. In Proceedings of the 2014 SIAM International Con-
ference on Data Mining. SIAM, 109–117.

[7] J Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual differences in

multidimensional scaling via an N-way generalization of “Eckart-Young” decom-

position. Psychometrika 35, 3 (1970), 283–319.
[8] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. 2020. Vafl: a method of

vertical asynchronous federated learning. arXiv preprint arXiv:2007.06081 (2020).
[9] Joon Hee Choi and S Vishwanathan. 2014. DFacTo: Distributed factorization of

tensors. In Advances in Neural Information Processing Systems. 1296–1304.
[10] Xiao Fu, Shahana Ibrahim, Hoi-To Wai, Cheng Gao, and Kejun Huang. 2020.

Block-randomized stochastic proximal gradient for low-rank tensor factorization.

IEEE Transactions on Signal Processing 68 (2020), 2170–2185.

[11] Richard A Harshman et al. 1970. Foundations of the PARAFAC procedure: Models

and conditions for an" explanatory" multimodal factor analysis. (1970).

[12] Huan He, Jette Henderson, and Joyce C Ho. 2019. Distributed Tensor Decompo-

sition for Large Scale Health Analytics. In The World Wide Web Conference.
[13] Joyce C Ho, Joydeep Ghosh, Steve R Steinhubl, Walter F Stewart, Joshua C Denny,

Bradley A Malin, and Jimeng Sun. 2014. Limestone: High-throughput candidate

phenotype generation via tensor factorization. Journal of biomedical informatics
52 (2014), 199–211.

[14] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: high-throughput

phenotyping from electronic health records via sparse nonnegative tensor fac-

torization. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. 115–124.

[15] David Hong, Tamara G Kolda, and Jed A Duersch. 2018. Generalized canonical

polyadic tensor decomposition. arXiv preprint arXiv:1808.07452 (2018).
[16] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng,

Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and

Roger GMark. 2016. MIMIC-III, a freely accessible critical care database. Scientific
data 3 (2016), 160035.

[17] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi

Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode,

Rachel Cummings, et al. 2019. Advances and open problems in federated learning.

arXiv preprint arXiv:1912.04977 (2019).

[18] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver.

2010. Multiverse recommendation: n-dimensional tensor factorization for context-

aware collaborative filtering. In Proceedings of the fourth ACM conference on
Recommender systems. 79–86.

[19] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi.

2019. Error Feedback Fixes SignSGD and other Gradient Compression Schemes.

In International Conference on Machine Learning. 3252–3261.
[20] Yejin Kim, Jimeng Sun, Hwanjo Yu, and Xiaoqian Jiang. 2017. Federated tensor

factorization for computational phenotyping. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

[21] Tamara GKolda and BrettWBader. 2009. Tensor decompositions and applications.

SIAM review 51, 3 (2009), 455–500.

[22] Tamara G Kolda and David Hong. 2019. Stochastic Gradients for Large-Scale

Tensor Decomposition. arXiv preprint arXiv:1906.01687 (2019).

[23] Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. 2018. Don’t

Use Large Mini-Batches, Use Local SGD. arXiv preprint arXiv:1808.07217 (2018).

[24] Jian Lou and Yiu-ming Cheung. 2018. Uplink communication efficient differen-

tially private sparse optimization with feature-wise distributed data. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[25] Jian Lou and Yiu-ming Cheung. 2020. An Uplink Communication-Efficient

Approach to Featurewise Distributed Sparse Optimization With Differential

Privacy. IEEE Transactions on Neural Networks and Learning Systems (2020).
[26] JingMa, Qiuchen Zhang, Joyce C. Ho, and Li Xiong. 2020. Spatio-Temporal Tensor

Sketching via Adaptive Sampling. CoRR abs/2006.11943 (2020). arXiv:2006.11943

https://arxiv.org/abs/2006.11943

[27] Jing Ma, Qiuchen Zhang, Jian Lou, Joyce C Ho, Li Xiong, and Xiaoqian Jiang. 2019.

Privacy-preserving tensor factorization for collaborative health data analysis.

In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 1291–1300.

[28] Ioakeim Perros, Evangelos E Papalexakis, Fei Wang, Richard Vuduc, Elizabeth

Searles, Michael Thompson, and Jimeng Sun. 2017. SPARTan: Scalable PARAFAC2

for large & sparse data. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 375–384.

[29] Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. 2013. A unified con-

vergence analysis of block successive minimization methods for nonsmooth

optimization. SIAM Journal on Optimization 23, 2 (2013), 1126–1153.

[30] Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. 2016.

Proximal stochastic methods for nonsmooth nonconvex finite-sum optimization.

In Advances in Neural Information Processing Systems. 1145–1153.
[31] Kijung Shin, Lee Sael, and U Kang. 2016. Fully scalable methods for distributed

tensor factorization. IEEE Transactions on Knowledge and Data Engineering 29, 1

(2016), 100–113.

[32] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evange-

los E Papalexakis, and Christos Faloutsos. 2017. Tensor decomposition for signal

processing and machine learning. IEEE Transactions on Signal Processing 65, 13

(2017), 3551–3582.

[33] Sebastian U Stich. 2018. Local SGD Converges Fast and Communicates Little. In

International Conference on Learning Representations.
[34] Sebastian U Stich and Sai Praneeth Karimireddy. 2019. The error-feedback

framework: Better rates for SGD with delayed gradients and compressed com-

munication. arXiv preprint arXiv:1909.05350 (2019).
[35] M Alex O Vasilescu and Demetri Terzopoulos. 2002. Multilinear analysis of image

ensembles: Tensorfaces. In European conference on computer vision. Springer.
[36] Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C Denny, Abel Kho, You

Chen, Bradley A Malin, and Jimeng Sun. 2015. Rubik: Knowledge guided tensor

factorization and completion for health data analytics. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

[37] Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang,

and Hongbin Zha. 2018. Alternating multi-bit quantization for recurrent neural

networks. ICLR-2018, arXiv preprint arXiv:1802.00150 (2018).
[38] Yangyang Xu and Wotao Yin. 2015. Block stochastic gradient iteration for convex

and nonconvex optimization. SIAM Journal on Optimization (2015).

[39] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine

learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 2 (2019), 1–19.

[40] Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, and Yuan Yao. 2019. Global Conver-

gence of Block Coordinate Descent in Deep Learning. In International Conference
on Machine Learning. 7313–7323.

[41] Shandian Zhe, Kai Zhang, PengyuanWang, Kuang-chih Lee, Zenglin Xu, Yuan Qi,

and Zoubin Ghahramani. 2016. Distributed flexible nonlinear tensor factorization.

In Advances in neural information processing systems. 928–936.
[42] Shuai Zheng, Ziyue Huang, and James T Kwok. 2019. Communication-Efficient

Distributed Blockwise Momentum SGD with Error-Feedback. In Advances in
Neural Information Processing Systems.

https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF
https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF
https://gitlab.com/tensors/tensor_toolbox
https://arxiv.org/abs/2006.11943
https://arxiv.org/abs/2006.11943

	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminaries and Background
	2.1 Notation
	2.2 Generalized Tensor Factorization
	2.3 SGD with Gradient Compression, Error-Feedback and Periodic Communication

	3 Proposed Methods
	3.1 FedGTF-EF: Communication Efficient GTF with Block Randomization, Gradient Compression and Error-Feedback
	3.2 FedGTF-EF-PC: Further Communication Reduction by Periodic Communication
	3.3 Efficient Partial Stochatic Gradient Computation for FedGTF

	4 Algorithm Analysis
	4.1 Convergence Analysis
	4.2 Complexity Analysis

	5 Experiment
	5.1 Experimental Setup

	6 Conclusion
	Acknowledgments
	A Additional Materials for Experiments
	A.1 Parameter Settings
	A.2 Additional Experiments

	B Convergence Analysis of Algorithm 1
	B.1 Proof Sketch of Theorem 4.1
	B.2 Proof Sketch of Theorem 4.2

	References

