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Abstract. Information in many real-world applications is inherently
multi-modal, sequential and characterized by a variety of missing val-
ues. Existing imputation methods mainly focus on the recurrent dynam-
ics in one modality while ignoring the complementary property from
other modalities. In this paper, we propose a novel method called
cross-modal memory fusion network (CMFN) that explicitly learns both
modal-specific and cross-modal dynamics for imputing the missing values
in multi-modal sequential learning tasks. Experiments on two datasets
demonstrate that our method outperforms state-of-the-art methods and
show its potential to better impute missing values in complex multi-
modal datasets.
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1 Introduction and Related Work

1.1 Introduction

In many real-world scenarios, information and data are multi-modal (e.g. hetero-
geneous features collected from multi-typed sensors for air quality surveillance
[1,8,20]; and multi-modal perception for face-to-face communication [16,19]). In
these scenarios, features from different modalities are seamlessly used together
for classification/regression purposes. However, multi-modal sequential data is
often incomplete due to various reasons, such as broken sensors, failed data
transmission or low sampling rate. For example, Fig. 1a shows two time series of
air quality data at Atlanta Fire Station #8, where two-thirds of fine particulate
matter (PM2.5) data is missing while relative humidity data is complete. Rela-
tive humidity data, as shown in Fig. 1a, is promising for improving daily PM2.5

surveillance because of its high correlation and low missing rate. Many previous
studies [2,3,13,15] have been developing models that could impute missing values
in multivariate sequential data by either constructing local statistics or utiliz-
ing local and global recurrent dynamics. Although these methods have achieved
remarkable success in multivariate sequential data of one modality, they can not
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be naturally adapted to multi-modal sequential data. Specifically, they are not
designed to incorporate the information from modalities with lower missing rates
for imputing the missing values of modalities with higher missing rates.

Fig. 1. Two time series from PM2.5 monitoring station at Atlanta Fire Station #8
(left) and an illustraion of CMFN (right).

Previous studies [9,16,17] in multi-modal sequential learning have been
proved successful in exploring intra-modality and inter-modality dynamics for
more robust and accurate prediction. The strategies for multi-modal sequential
learning can be classified into three categories. The first strategy is early fusion,
which simply concatenates multi-modal features at the input level [10,12]. This
fusion strategy could not efficiently model the intra-modality dynamics because
the complex inter-modality dynamics can dominate the learning process or result
in overfitting. The second strategy is late fusion, which trains unimodal classifiers
independently and performs decision voting [14,19]. This strategy could lead
to inefficient exploration of inter-modality dynamics by relying on the simple
weighted averaging of multiple classifiers. The last strategy is to design models
that could learn both the intra-modality and inter-modality end-to-end [9,16,17].
It has been shown that by exploring the consistency and complementary proper-
ties of different modalities, the third strategy is a more effective and promising
way of multi-modal sequential learning. However, there is few studies examining
the condition when there are missing values in one or more modalities and how
to leverage the intra-modality and inter-modality dynamics for missing value
imputation remains an under-explored problem.

To address the aforementioned problems, we propose a novel cross-modal
memory fusion network (CMFN) for multi-modal sequential learning with miss-
ing values. CMFN extends the memory fusion network [17], where recurrent
neural networks (RNNs) are leveraged for learning intra-modality dynamics and
attention-based modules are leveraged for learning inter-modality dynamics.
Since the original RNN is unable to handle incomplete input, we introduced
a novel variant of gated recurrent units (GRU) [5] called GRU-V to impute the
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missing values by leveraging modal-specific and cross-modal dynamics. The main
contributions of the paper are:

• We study a new problem of multi-modal sequential learning with missing
values by leveraging intra-modality and inter-modality dynamics.

• We propose a novel framework CMFN, with a GRU-V module to impute
missing values in multi-modal sequential learning.

• We conduct experiments on both real-world datasets and synthetic datasets
to validate the proposed approach.

1.2 Related Work

We now briefly review related work to place our contribution in context.

Multivariate Sequential Learning with Missing Values. A variety of
imputation methods such as statistical imputation (e.g., mean, median), EM-
based imputation [11], K-nearest neighborhood [6] and tensor factorization [4]
have been applied to estimate missing values. However, these approaches fail to
model the sequential pattern of data and are independent of the training pro-
cess, which often leads to sub-optimal results. To tackle this issue, recent studies
[2,3,13] propose end-to-end frameworks that jointly estimate missing values and
make the prediction. For example, Che et al. [3] introduced the GRU-D model
to impute missing values in a single modality using the linear combination of
statistical features, which is under strong assumptions that missing values could
be learned by assigning weights between the last observed value and statistical
mean value.

Multi-modal Sequential Learning. Previous studies dealing with multi-
modal sequential data have largely focused on three major types of models as
mentioned in Sect. 1.1. The third category of models [9,17,18] relies on collaps-
ing the time dimension from sequences by learning a temporal representation
for each of the different modalities. Memory fusion network (MFN) [17] is one of
these models, which uses a special attention mechanism called the Delta-memory
Attention Network (DMAN) and a Multi-view Gated Memory to identify the
cross-modal interactions. Experiments show that these models [16–18] achieve
remarkable success on a variety of tasks, including multi-modal sentiment anal-
ysis and emotion recognition; however, none of them can handle input with
missing values in one or more modalities.

2 Methodology

In this section, we first define the problem setting, and then we present the model
architecture in detail.
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2.1 Problem Formulation

The input is multi-modal sequential data with N ≥ 2 modalities. For those N
modalities, we order them from high missing rate to low missing rate as modality
1, modality 2, ..., modality N. For each modality k, the input data is denoted as
Xk =

[
xt

k : t ≤ T, xt
k ∈ Rdxk

]
, where dxk

is the input dimensionality of modality
k. We also input the masking matrix Mk = {m1,m2, . . . , mt} ,mi ∈ {0, 1}dxk

to denote missing status (m = 0 means missing) and the time interval matrix
Dk = {δ1, δ2, . . . , δt} , δi ∈ Rdxk to denote the number of time steps since last
observation.

2.2 Model Architecture

The Cross-modal Memory Fusion Network (CMFN) is a recurrent model for
multi-modal sequential learning with missing values, which consists of two main
components: 1) A system of RNNs consisting of multiple RNNs for learning intra-
modality dynamics. 2) DMAN and Multi-view Gated Memory [17] for learning
inter-modality dynamics. As shown in Fig. 1b, RNNs such as GRU and long
short-term memory (LSTM) [7] are applied for modalities without missing val-
ues, GRU-V is applied for imputing the missing values with intra-modality and
inter-modality dynamics for modalities with missing values.

GRU-V is inspired by the structure of GRU-D proposed by Che et al. [3]. To
explain the procedure of missing value imputation, we assume that the input for
modality 1 is feature matrix X1, masking matrix M1 and time interval matrix
D1. As shown in Fig. 1b, at time step t, for the N − 1 modalities with lower
missing values, we concatenate their hidden outputs {ht

2, h
t
3, . . . , h

t
N−1} as ht

N...2

to represent cross-modal dynamics. For modality 1, we have the hidden output
ht−1
1 at last time step to represent modal-specific dynamics. We then concatenate

the cross-modal and modal-specific dynamics, denoted as c[h
t−1
1 ,ht

N...2], and pass
the concatenated tensor to a neural network Dv : Rdc �→ Rdx1 to infer the
variance of the missing values from its empirical mean X̃1 in modality 1 as:

V t
X1

= Dv

(
c[h

t−1
1 ,ht

N...2]]
)

(1)

V t
X1

are softmax activated scores, which is then used to infer the missing values
as:

X t
1 = X̃1 + 2K · (V t

X1
− 0.5) (2)

X t
1 are the inferred values, and we rescale V t

X1
from [0, 1] to [−K,K] using

rescale parameter K. Because all the input values are normalized, we set K = 3
to represent the variance of input values. Following GRU-D, we then use a weight
decay function ΓDt

1
to assign weights between the last observed value Xt′

1 and
the inferred value X t

1 and get final imputed value X̂t
1 as:

ΓDt
1

= exp
{

−max
(
Γ̃ ,WΓ Dt

1 + bΓ

)}
(3)
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X̂t
1 = ΓDt

1
Xt′

1 + (1 − ΓDt
1
) · X t

1 (4)

where WΓ and bΓ are model parameters that we train jointly with other parame-
ters of the GRU. Γ̃ is the default weight decay, which is set as a hyper-parameter
in range [0, 1].

3 Experiments

In this section, we describe experiments in four parts. First, we describe the
datasets. Second, we present the baseline models. Then we describe the exper-
imental setup. Last, we summarize experimental results comparing with state-
of-the-art baselines.

3.1 Datasets

Air Quality Dataset. Air Quality dataset is time series of daily measurement
of PM2.5 and meteorological data (i.e. relative humidity and temperature) in
Atlanta Fire Station #8 monitoring site from Jan 1, 2011 to Dec 31, 2018. This
dataset consists of two modalities and it facilitates a regression task of predicting
PM2.5 concentration based on data of the past 7 days.

CMU-MOSI Dataset. Multimodal Opinion Sentiment Intensity (CMU-MOSI)
dataset [19] is a collection of 93 opinion videos from online sharing websites
with three modalities: language, vision, and acoustic. Each video consists of
multiple opinion segments and each segment is annotated with sentiment in
the range [−3, 3]. This benchmark dataset facilitates three prediction tasks: 1)
Binary Sentiment classification 2) Seven-Class sentiment classification 3) Sen-
timent regression in range [−3, 3]. This dataset contains no missing values, so
we synthetically introduce missing values by randomly masking 50% percent of
the values in acoustic modality. We construct the synthetic datasets in two ways
to test our model under different conditions. Synthetic Dataset #1: For 5 fea-
tures in acoustic modality, We randomly mask values separately, which means
this modality is partly masked when selected. Synthetic Dataset #2: We mask
values for all 5 features randomly, which means this modality is masked totally
when selected.

3.2 Baseline Models

Here, we use the following models for baselines and ablation studies.

– EFLSTM: LSTM model using early fusion strategy. The missing values are
simply imputed by the last observed values and all modalities are concate-
nated into a single modality at the input level.

– MFN: State-of-the-art multi-modal learning model that learns the temporal
representation for each modality using an RNN. The missing values are simply
imputed by the last observed values.
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– GRU-D: Baseline for multivariate sequential learning with missing values. All
modalities are concatenated into a single modality using early fusion method
at the input level.

– MFN-GRUD: This model is proposed for the ablation study and the RNNs
in MFN are replaced with the GRU-D. Thus, it is a multi-modal learning
architecture that imputes the missing values based only on intra-modality
dynamics.

3.3 Experimental Setup

For the Air Quality dataset, we split the training (2011–2016), validation (2017)
and testing (2018) sets chronologically. For the CMU-MOSI dataset, there are
1284, 229, and 686 samples in the training, validation, and testing sets respec-
tively. We implement our models using Pytorch1. For all the experiments, the
batch size is set to be 32 and all the parameters are tuned by the validation
dataset.

3.4 Performance Comparison

Table 1. Comparison with state-of-the-art approaches for multi-modal sequential
learning with missing values.

Task Air Quality CMU-MOSI Dataset #1 CMU-MOSI Dataset #2

Metric MAE MSE BA F1 MA(7) MAE r BA F1 MA(7) MAE r

ELLSTM 3.19 15.5 0.726 0.725 0.325 1.051 0.584 0.739 0.735 0.343 1.021 0.623

MFN 3.17 15.35 0.739 0.735 0.322 1.012 0.618 0.749 0.745 0.327 1.008 0.616

GRUD 3.13 15.22 0.739 0.738 0.294 1.037 0.620 0.755 0.750 0.331 0.957 0.652

MFN-GRUD 3.07 14.8 0.736 0.729 0.321 0.996 0.621 0.755 0.753 0.354 0.987 0.626

CMFN 3.04 14.21 0.755 0.751 0.354 1.007 0.615 0.767 0.759 0.353 0.958 0.660

Table 1 summarizes the comparison between CMFN and proposed baselines for
all the multi-modal sequential learning tasks. For the regression tasks, we report
mean absolute error (MAE), mean squared error (MSE) and Pearson’s correla-
tion r. For binary classification, we report binary accuracy (BA) and binary F1
score. For multiclass classification, we report multiclass accuracy MA(k) where
k denotes the number of classes. The results show that CMFN outperforms all
the baseline methods in 8/12 tasks. For the CMU-MOSI dataset, when the fea-
tures in acoustic modality are either partly missing (Dataset #1) or completely
missing (Dataset #2), CMFN can robustly impute the missing values and out-
perform the compared methods. For the ablation study, the difference between
CMFN and MFN-GRUD is that the latter only uses intra-modality dynamics
for missing value imputation. The results show that CMFN outperforms MFN-
GRUD in 9/12 tasks, which suggests that cross-modal dynamics can improve
the missing value imputation performance.
1 https://pytorch.org.

https://pytorch.org
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4 Conclusion

In this paper, we investigate a novel problem of exploring intra-modality and
inter-modality dynamics for multi-modal sequential learning with missing val-
ues. We propose a new framework CMFN, which adopts modality-specific and
cross-modal information for imputing missing values. To validate the frame-
work, we instantiated a setup incorporating real-world data and synthetic data
on benchmark multi-modal learning data. Our result outperforms existing state-
of-the-arts models, with ablation studies to show architectural advantages.
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