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ABSTRACT
Systematic review (SR) is an essential process to identify, evalu-
ate, and summarize the findings of all relevant individual studies
concerning health-related questions. However, conducting a SR is
labor-intensive, as identifying relevant studies is a daunting process
that entails multiple researchers screening thousands of articles for
relevance. In this paper, we propose MMiDaS-AE, a Multi-modal
Missing Data aware Stacked Autoencoder, for semi-automating
screening for SRs. We use a multi-modal view that exploits three
representations, of: 1) documents, 2) topics, and 3) citation networks.
Documents that contain similar words will be nearby in the doc-
ument embedding space. Models can also exploit the relationship
between documents and the associated SR MeSH terms to capture
article relevancy. Finally, related works will likely share the same
citations, and thus closely related articles would, intuitively, be
trained to be close to each other in the embedding space. However,
using all three learned representations as features directly result in
an unwieldy number of parameters. Thus, motivated by recent work
on multi-modal auto-encoders, we adopt a multi-modal stacked
autoencoder that can learn a shared representation encoding all
three representations in a compressed space. However, in practice
one or more of these modalities may be missing for an article (e.g.,
if we cannot recover citation information). Therefore, we propose
to learn to impute the shared representation even when specific
inputs are missing. We find this new model significantly improves
performance on a dataset consisting of 15 SRs compared to existing
approaches.
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• Applied computing → Health informatics; • Information
systems → Clustering and classification.
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Figure 1: A simplified illustration of the SR screening pro-
cess by Galaviz et al. [17].

ACM Reference Format:
Eric W. Lee†, Byron C. Wallace‡, Karla I. Galaviz†, Joyce C. Ho†. 2020.
MMiDaS-AE: Multi-modal Missing Data aware Stacked Autoencoder for
Biomedical Abstract Screening. In ACM Conference on Health, Inference, and
Learning (ACM CHIL ’20), April 2–4, 2020, Toronto, ON, Canada. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3368555.3384463

1 INTRODUCTION
Systematic reviews (SRs) are essential knowledge translation tools
focused on bridging the research-to-practice gap across a wide
range of domains. In health research, SRs aim to identify, evaluate,
and summarize the findings of all individual studies (which typi-
cally describe clinical trial results) relevant to a clinical question,
thereby making the available evidence more accessible. SRs (and
meta-analyses) in this way provide high-quality evidence that can
inform healthcare decision making, support clinical guidelines, and
guide health policies [10, 19, 20]. For instance, a SR can be used
to synthesize findings from randomized intervention studies to
robustly determine which interventions are best supported for a
particular condition.

Conducting SRs is a time-consuming and complex task [21]. Es-
tablished methodologies for performing a SR [11, 35, 37] require a
comprehensive search to identify all the relevant studies for inclu-
sion. Indeed, comprehensiveness (so as to avoid bias via ‘cherry-
picking’ of evidence) is a key property of rigorous evidence synthe-
ses. Yet the broad searches necessary to achieve this yield imprecise
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search results including searches that often yield only ∼1% relevant
results. Domain experts must wade through these mostly irrelevant
articles to identify those that meet the inclusion criteria; thus, pro-
ducing a single review can require thousands of person-hours [2].
Figure 1 provides an example of the laborious citation screening
process for a SR based on diabetes prevention interventions. Only
0.38% of the articles were selected for full-text review based on
the title and abstract and 0.24% were included (i.e., analyzed and
evaluated) in the actual review itself [17]. The exponential growth
of biomedical literature has further exacerbated this problem [5].

Given the importance of SRs for realizing evidence-based practice
and the labor that conducting these entails, there is a clear need to
expedite tasks necessary for evidence synthesis while maintaining
rigor and comprehensiveness. In particular, semi-automation can
help speed up the screening process, an extremely time-consuming
endeavor due to a large number of citations [36]. The standard
methodology for semi-automating the citation screening step of
SRs entails training a custom classification model for each new
review. Unfortunately, many of the previous approaches assume
that they have small labeled batches from the reviewers, and train
their model on those batches to predict the rest [15, 27]. Moreover,
the existingmethods focus primarily only on the text itself including
using representations like bag-of-words, or word embeddings [6, 13,
15, 27, 28, 34, 52]. However, there is rich information (i.e., citation
relationships between the articles) that can be used to learn more
accurate models.

Our goal in this work is to minimize the number of relevant arti-
cles (articles included after the full-text screening) excluded by the
classifier while reducing the reviewers’ workload by excluding the
maximum number of irrelevant documents. Our general strategy
builds upon a body of work on semi-automating citation screening
for evidence syntheses via machine learning [15, 41, 49, 52]. To
address the limitations of existing semi-automation SR models, we
introduce MMiDaS-AE, a Multi-modal Missing Data aware Stacked
AutoEncoder. We adopt the multi-modal stacked autoencoder [9] to
encode a variety of information that includes 1) text from the docu-
ment, 2) Medical Subject Headings (MeSH) terms, and 3) citation
networks. In addition to the textual data in the documents, each
article in PubMed (a repository of biomedical articles) is associated
with MeSH terms, which codify abstract concepts and can be used
to learn topic representations. MMiDaS-AE also uses co-citation
relations between articles. The intuition is that an unknown article
with co-citation relations to an article that passes the SR screening
is more likely to be relevant.

However, it is crucial for the model to be robust to missing data
representations, especially when learning a shared representation
using three different sources of information. Thus, to mitigate the
effects of missing data, we extend work for bimodal speech classifi-
cation [38] to design an imputation technique for multi-modal data
in which we intentionally leave one or more representations out
while learning to induce a shared representation in a latent space
from which we can reconstruct all input modalities. Consequently,
this multi-modal stacked autoencoder is robust to missing data.
We also introduce a multi-label classification task to improve the
prediction result by utilizing whether the article passed the abstract
screening and whether it passed the full-text screening. Finally,
we utilize a cross-topic learning strategy to utilize existing SRs to

pre-train MMiDaS-AE, and then fine-tune the weights of the model
to a specific SR topic.

We perform extensive studies on 15 SRs (or topics) related to
drug efficacies provided by Cohen et al. [15]. Our pre-trained model
achieves the best predictive performance (measured using the area
under the receiver operating curve) on 11 out of 15 of the topics
compared to existing approaches. Moreover, MMiDaS-AE achieves
the best performance on 13 of the 15 topics with a small amount of
labeled data and can reduce the workload by 13.2% to 69.4% where
one of the existing approaches reduces workload by 11.1% to 62.9%.
In addition, our ablation study demonstrates the importance of im-
putation and multi-label classification, as it can reduce the reviewer
workload by 11.5% to 67.8%, compared to the previously proposed
multi-modal stacked autoencoder [9]. As a result, MMiDaS-AE re-
duces the reviewers’ workload by excluding the maximum number
of irrelevant documents.

2 RELATEDWORK
Methods for semi-automating the citation screening step of SRs
have been widely studied; see [41] for a survey of this work. The
typical approach is to adopt a supervised learning model – equiva-
lent to training a custom classification model for each new review.
The classification models used to discriminate between relevant and
irrelevant articles for a given topic include support vector machines
(SVMs) [22, 42, 49, 52], generalized linear models [23], Voting Per-
ceptron [15], Random Forest [27], Complement Naive Bayes [33],
Decision Tree [6], and k-NN [1]. Note that models can be used
either to make ‘hard’ include/exclude decisions, or can be used to
rank citations in order of likely relevance.

Because supervision is expensive for this task, and a new model
must be trained for each new review, a common strategy explored
is active learning [14, 28, 34, 49, 50] in which the learner starts
with a small subset of manually labeled records, which are used
to train the initial classifier. After each learning (or annotation)
cycle, the newly trained model classifies the remaining unlabelled
citations and presents a sample of these records to the reviewer for
annotation. This iterative approach may be used to train a model
that is used to classify all remaining (unscreened) citations, or can
simply be used to prioritize identification of relevant abstracts so
that the review team can begin data extraction from these [41].

Several software tools for reducing abstract screening time. Ab-
strackr [49] is a semi-automated screening tool that uses active
learning approaches to reduce the number of relevant and irrelevant
labels necessary to learn a robust predictive model. Rayyan [42]
is also a semi-automated web and mobile screening application
that builds an inclusion/exclusion model based on individual words.
EPPI-Reviewer [45] is an online tool for research synthesis that
clusters documents to describe the range of studies that have been
identified which has been used by hundreds of users for over 200
SR. Finally, SWIFT-Review [23] is an interactive workbench that
uses text-mining tools to prioritize the relevant documents.

Most of the semi-automation SR approaches use bag-of-words
and their combinations [6, 13, 15, 27, 28, 34, 52]. For example, Cohen
et al. [13] proposed to use uni-grams and bi-grams to treat each of
them as a single word, Bannach-Brown et al. [4] used tri-gram and
GENIA tagger [48] prior to extracting uni-grams, and Khabsa et
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Figure 2: A simplified example of the co-citation relations and the partial citation network used to learn representations. Solid
nodes denote target articles that we need to classify; empty nodes are the articles used to learn the representation of target
articles.

al. [27] used brown clustering on the bi-grams to tackle the data
sparsity problem. Some more recent efforts have proposed to learn
a paragraph vector using neural models [22, 31].

Some prior work has considered an intra-topic setting [15, 27, 33,
40] which assumes the models have access to small labeled batches
from the reviewers and train their model on those batches to predict
the rest. On the other hand, Cohen et al. [14] proposed a cross-topic
(inter-topic) learning strategy by observing that classifiers can learn
to exclude a large proportion of articles using any kind of sampling
strategy. They usedmultiple SVMmodels by subsampling non-topic
specific data to prioritize relevant articles. While semi-automation
models are evaluated predominantly on a private dataset, many of
them also provide direct comparisons to the Cohen dataset [15].

3 FEATURE REPRESENTATIONS
Feature extraction is a crucial component to the success of the
classification process. Previous approaches use bag-of-words of
titles, abstracts, and MeSH terms [6, 13, 15, 27, 28, 34, 52]. Khabsa
et al. [27] used co-citation data as a feature to semi-automate the
SR. However, unlike previous approaches that deal with each rep-
resentation separately, we propose to learn a shared representation
that encodes different article information. As a result, the model
can be robust to missing data and a limited number of samples.

3.1 Document Representation
Natural language processing (NLP) systems typically transform in-
put documents into fixed-dimensional vector representations that
can subsequently be used as feature vectors by ‘downstream’ mod-
ules (e.g., logistic regression or a feed-forward neural network).
Previous work for semi-automating screening for SRs predomi-
nantly represented documents via sparse bag-of-words (BOW) rep-
resentations [4, 15, 27, 33, 40, 52]. More recent work in NLP has
moved towards learning better representations of texts, in particu-
lar by mapping high-dimensional and sparse BOW representations
into dense, low-dimensional vectors. For example, doc2vec extends
word2vec to learn distributed representations of documents (rather
than words) [26, 30]. ELMO [44] and BERT [16] were proposed to
learn the contextual representations.

For our task, we restrict our document to titles and abstracts
due to potential copyright issues inherent to full-text articles. As
a result, each article’s input is relatively short (an average of 118

words after simple preprocessing). For short texts, averaging the
embeddings of all words in the text can serve as the document
representation [26]. Therefore, we adopt PMCVec [18], a pre-trained
word2vec embedding, and learn the document representations of
all articles by averaging embeddings in the title and the abstract
of each document. PMCVec was trained on titles and abstracts
from ∼27 million documents indexed in the PubMed database. We
explored SciBert [7], a deeper representation, but this did not yield
better predictive power as demonstrated in our empirical results.

3.2 Topic Representation
In the “Identification” step of SRs depicted in Figure 1, a combina-
tion of MeSH terms that represent the SR topic is used for database
search to retrieve the initial articles list. Using these MeSH terms,
we can compute the distance between the article and the MeSH
terms. Thus, we learn a topic representation of an article by using
the relationship between MeSH terms and the article. This can be
done in two steps. First, we learn the representation of all MeSH
terms of the topic. Second, we subtract the document representation
we learned from the previous section from the MeSH term repre-
sentation. Thus, this topic representation captures the relationship
between the article and the MeSH terms used in the SR search. This
has the added benefit of distinguishing articles that are in multiple
SRs.

Because we are learning the relationships between documents
and associated MeSH terms of the topic by subtracting their repre-
sentations, both representations should be learned from the same
embedding space. One benefit of PMCVec [18] is that it learns rep-
resentations of both single words and multi-words from PubMed
abstracts as technical phrases in biomedical texts such as diseases or
symptoms are multi-words phrases. Thus for MeSH terms, instead
of using the composition of single words, multi-words MeSH terms
also appear in the embedding space, and we can directly use them
to compute the MeSH terms embedding.

3.3 Citation Network Representation
Most existing SR screening methods primarily rely on text features
derived from titles and abstracts. This ignores the rich citation
structure (e.g., the study is cited by other studies) available for each
article. Figure 2(a) depicts a simple citation network (a network
that in which articles are nodes and citations are edges), and C
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and A implies A is cited by C (or C is a citation of A). From the
citation network, co-citations (two articles cited together by the
other articles) might be used to find related studies. For example,
in 2(a), A and B are co-citations as there exists an article C that cites
both A and B. This is motivated by the intuition that if one article is
included, then co-cited articles are more likely to be included as well.
Using features consisting of just the bag-of-words of uni-grams and
co-citations, Khabsa et al. [27] showed that their machine learning
model could achieve good recall. Yet, co-citation only captures one
perspective of the article. There exist cases in which two articles
do not have a co-cited article, but their citations having co-cited
articles. For example, in Figure 2(b), A and B do not share any
citations directly, however, their citations, C and D are co-citations
as they share E, F, and G as citations. In such examples, directly
looking at the co-citations of the first two articles, A and B, do not
help to find this relationship. Therefore, we propose to construct
a citation network and learn a representation (low-dimensional
projection) of each article.

However, constructing a complete citation network is infeasible.
Instead, we use a partial citation network that contains co-citation
information by limiting the network to contain only articles at most
two citations away. Figure 2(c) provides an example of a partial
citation network that is used. The partial citation network contains
citation information of 5 articles which is shown as P1 → P2 →

T1 → P3 → P4 in Figure 2(c) where T1 is the article that we are
considering about. To account for co-citation information, we adopt
LINE [46], a network embedding method that takes into account
both first- and second-order proximity. The first-order proximity
permits the model to learn the direct link between nodes such as T2
and T3 in Figure 2(c), while second-order proximity is determined
by the similarity of the “neighbors” (co-citation) of two nodes such
as P2 and P6. Overall, from Figure 2(c), after the training, T2 and
T3 are close to each other in the embedding space because of the
citation relation (first-order proximity), and P2 and P6 are close to
each other by sharing neighbor (second-order proximity). Also, T1
and T2 should be close to each other because P2 and P6 are already
close to each other, but also there is a link between P2 and T1, and
P6 and T2. However, T4 would not be considered while training

T1, T2, and T3 because there is no citation relationship. This is an
important factor because the main goal of our model is to correctly
classify articles T1, T2, T3, and T4 using the co-citation information
ultimately encoded into the learned representation.

4 MMIDAS-AE DESIGN
MMiDaS-AE adopts a multi-modal stacked autoencoder [9] which
takes multiple input representations and learns a shared representa-
tion that encodes all of these modalities. This avoids the unwieldy
number of parameters that are introduced with a simple concate-
nation of each input representation. Also, compressing the feature
representations into a shared representation makes it easier to ap-
ply any matrix manipulation technique that can not be done in
the input space because of the difference in dimensions. However,
the existing work was insufficient to deal with missing data rep-
resentations. Thus we introduce a new learning strategy by using
an augmented dataset. Finally, we propose a multi-label classifica-
tion task to improve the prediction results. An illustration of our
framework is shown in Figure 3.

4.1 Multi-modal Stacked Autoencoder
Autoencoders are unsupervised models that learn compressed rep-
resentations of inputs. The objective for the autoencoder is to re-
construct inputs faithfully from this learned representation with
minimal error [43]. Cadena et al. [9] proposed multi-modal stacked
autoencoders for the task of robotics scene understanding to sup-
port different input modalities simultaneously (i.e., RGB image,
scene depth, and semantic information). Each input representa-
tion was passed through an autoencoder. The three independent
autoencoders were concatenated together using their respective
hidden layers and then passed to another autoencoder, thus induc-
ing a shared representation from which to reconstruct the original
(concatenated) inputs. One may view this approach as a means of
learning disentangled representations [24, 32] in which we have
explicit low-dimensional encodings of the respective input modali-
ties. We found empirically that the best performance was obtained
when we unified the length of the independent hidden layer prior to
concatenation. For example, if we have 256, 200 and 200 dimensions
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Figure 4: The process of imputation on multi-modal stacked autoencoder to deal with missing data.

as an input for each representation, the best performance we get
was when we use unified (e.g. 100) dimensions for the independent
hidden layer.

4.2 Missing Data Imputation in Autoencoder
One advantage of multi-modal auto-encoders is their potential to
combine the available modalities to impute representations in the
case that one of these is missing [9, 38]. However, robustness to
missing data is crucial when learning the shared representation
of multi-modal inputs; otherwise, missing inputs may yield poor
shared representations. There are three possible cases of missing-
ness (for different modalities):

(1) Citation network representation: lacking citation informa-
tion.

(2) Document representation: missing abstract.
(3) Topic representation: missing document representation as

topic representation is computed by using document repre-
sentation.

Ngiam et al. [38] proposed the use of an augmented dataset
in the bimodal autoencoder that has a single modality as an in-
put (the other input is set to zero values) that reconstructs two
modalities as an output. However, naively extending this to the
multi-modal scenario does not yield desirable results. We introduce
a strategy that generalizes this work [38] for multi-modal in which
we intentionally leave one or more representations out (or ‘empty’)
while learning to induce a shared representation in a latent space
from which we reconstruct all input representations. Figure 4 illus-
trates our proposed imputation process to construct the augmented
dataset. In particular, for the inputs with no missing values, we
purposely use an empty representation for each input and try to
reconstruct the output with the clean representations.

For illustration purpose, we demonstrate our process on a simple
2-dimensional example. Suppose we have 3 representations, c =
[1, 2], d = [3, 4], and t = [5, 6]. Then we train our encoder with all
cases shown in Figure 4. For each case, the inputs are

• Case 1: c = [0, 0], d = [3, 4], and t = [5, 6]
• Case 2: c = [1, 2], d = [0, 0], and t = [5, 6]
• Case 3: c = [1, 2], d = [3, 4], and t = [0, 0]
• Case 4: c = [1, 2], d = [3, 4], and t = [5, 6]
• Case 5: c = [0, 0], d = [0, 0], and t = [5, 6]
• Case 6: c = [0, 0], d = [3, 4], and t = [0, 0]
• Case 7: c = [1, 2], d = [0, 0], and t = [0, 0]

and the reconstructed output is c = [1, 2], d = [3, 4], and t =
[5, 6] for all cases. Therefore, we intentionally leave one or two

representations out using an empty representation (vector of zeroes)
but still require the multi-modal autoencoder to reconstruct all
representations. Using this process we can handle missing input
representations because the model is forced to learn a robust shared
representation from all possible combinations of the inputs.

4.3 Multi-label Classification Task
The objective of the MMiDaS-AE is to minimize the number of
relevant articles (articles after the full-text screening) that are ex-
cluded while minimizing the number of irrelevant citations that
need to be screened by domain experts. Thus, the model must make
a binary prediction for each instance which indicates whether or
not it should be screened by a human reviewer. Since SRs are in-
tended to be comprehensive assessments of the relevant evidence,
achieving high recall (i.e., sensitivity to the relevant citations) is
imperative. This is challenging in practice because there is severe
class imbalance [25, 51], that is, there are far fewer relevant than
irrelevant citations. Consider Figure 1: Here we have 20,489 articles
in total, but only 51 (0.24%) of these pass full-text screening.

To ensure the identification of relevant articles, we propose a
multi-label classification task to use the results of abstract screening
as the labels are less imbalanced than the full-text. In the literature
identification phase of SRs, there are two steps that are typically
performed: title/abstract screening, which is followed by full-text
screening. We posit that documents that pass the title/abstract
screening are more likely to be “relevant” than those that are dis-
carded. In other words, we were interested in ordering each docu-
ment into three ordered categories: completely irrelevant, inclusion
in the full-text screening, and inclusion in the SR. By including an
abstract classifier, we can encode additional information that may
help our model distinguish completely irrelevant articles. Thus,
MMiDaS-AE uses two classifiers, an abstract classifier, and a full-
text classifier. Then, as proposed by Niu et al. [39], we sum the
prediction probability of the true (relevant) class for each classifier
and use this to evaluate the performance of MMiDaS-AE. For exam-
ple, if the article is predicted as irrelevant by the abstract classifier,
it will have a low probability (and be unlikely to meet the final
threshold). Thus, MMiDaS-AE will only detect articles that have
high probabilities for both the abstract and full-text classifier.

Therefore, MMiDaS-AE consists of the following steps (as il-
lustrated in Figure 3). We first train each feature representation,
citation network, title/abstract, and MeSH terms into the citation,
document, and topic representations. Then, we train a multi-modal
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Table 1: Statistics of all datasets used. Abs and Full refer to
the number of abstract triage and article triage statuses, re-
spectively. % shows the percentage of the articles that are
included after the full-text screening (abstract screening for
the last 4 SRs). First 15 SRs are Cohen [15] dataset.

SR Abs Full Total %

ACEInhibitors 183 41 2544 1.61
ADHD 84 20 851 2.35
Antihistamines 92 16 310 5.16
AtypicalAntipsychotics 363 146 1120 13.04
BetaBlockers 302 42 2072 2.03
CalciumChannelBlocker 279 100 1218 8.21
Estrogens 80 80 368 21.74
NSAIDs 88 41 393 10.43
Opioids 48 15 1915 0.78
OralHypoglycemics 139 136 503 27.04
ProtonPumpInhibitors 238 51 1333 3.83
SkeletalMuscleRelaxants 34 9 1643 0.55
Statins 173 85 3465 2.45
Triptans 218 24 671 3.58
UrinaryIncontinence 78 40 327 12.23
Anemia 653 - 5653 11.55
COPD 196 - 1606 12.20
Clopidogrel 771 - 8291 9.30
Proton Beam 243 - 4751 5.11

stacked autoencoder to learn the shared representations that en-
code all three representations. While training the multi-modal stack
autoencoder, we apply our proposed missing data imputation tech-
nique discussed in Section 4.2. Once the shared representation is
learned, we use two softmax classifiers, an abstract classifier and
a full-text classifier which is trained separately. The prediction
probability of true (relevant) classes is then the sum of these two
classifiers.

5 EXPERIMENT SETUP
5.1 Dataset
For ease of comparison with previous works, we evaluate our model
on the publicly available dataset provided by Cohen et al. [15].
The dataset includes 15 SRs (or topics) concerning different drug
efficacies.1 The 15 systematic reviews were performed by members
of evidence-based practice centers (EPCs). Each systematic review
contains a PubMed identifier (PMID), abstract triage status, and
article triage status. The PMID allows us to identify which article
was included in the systematic review process. Abstract and article
triage status indicates whether the article passed the title/abstract
screening and full-text screening stages, respectively.

While the Cohen dataset is used for training and testing (14
SRs used as training and 1 SR as testing), we used 4 additional
datasets to use as a validation set for hyperparameter tuning. The
other 4 datasets are: COPD [12], proton-beam [47], anemia [29],
and clopidogrel [3]. These 4 datasets also contain PMID but only
the status for the abstract screening is included.

1This dataset was later extended to include 24 systematic reviews [14], however,
only 15 systematic reviews have been made publicly available.

Table 1 reports the distribution of articles in each topic. The first
15 SRs are Cohen dataset and the last 4 SRs are the datasets used as
a validation set. ‘-’ in the Full column denotes that the dataset lacks
the full-text screening result. As shown in the table, the number of
articles included after the full-text screening varies from 0.55% to
27.04%, demonstrating a relatively large degree of imbalance.

5.2 Data Preprocessing
5.2.1 Titles and abstracts extraction. The Entrez API2 was used to
retrieve the title and abstract of each article using the PMID. In
total, 37,149 unique articles were extracted using the API. There
are 1,885 duplicate articles between the datasets, and there were
4,548 articles with a missing abstract. The title and abstract of each
article are concatenated together and pre-processed using the nltk
library [8] in Python to remove stopwords, punctuations, and num-
bers. Each remaining word is then converted to a 200-dimensional
vector representation using PMCVec3 [18]. The individual word
representations are then averaged to obtain the final document
representation.

Note that we also evaluated the results using a larger pre-trained
language model, SciBert [7] and compared the results with PMCVec.
The results will be discussed in Section 6.3.

5.2.2 MeSH terms extraction. In the normal SR process, the initial
list of articles is retrieved by the combination of MeSH terms. How-
ever, all the datasets do not contain the MeSH terms of each SR.
Thus, we manually selected the MesH terms that describe each SR
the best using the following process. For each SR, we obtained all
the MeSH terms (information available from PubMed) that appear
in the articles with their associated frequency. Then using the top
50 most frequent terms from this list, we manually searched and
selected the MeSH terms that exist on the Wikipedia page associ-
ated with the topic (i.e., ACE Inhibitors). We also accounted for the
number of times the term appears in the overall corpus to avoid
“uninformative” terms such as “Humans”, “Male”, “Female”, and
“adult’. After excluding terms that exist in the top 50 for all SRs,
each SR contains unique terms.

Once the MeSH terms of each SR are selected, we compute the
MeSH terms representations using PMCVec. As discussed in Sec-
tion 3.2, it is necessary to use the same pre-trained word embedding
because we are learning the relationships between documents and
associated MeSH terms of the topic. MeSH terms representations
are computed by taking the average of the representations of the
MeSH term itself or each word. Then MeSH terms representations
are subtracted from the document representation of each article to
compute the topic representation. This will distinguish the same ar-
ticle in multiple SRs to have different topic representations. Same as
document representation, a 200-dimensional vector representation
is used for topic representation.

5.2.3 Constructing the citation network. Using the Entrez API, we
can also extract citation data of the article, however, many of the
articles contain an insufficient number of citations or none. Thus,
we use Semantic Scholar database4 as our additional resource to

2https://www.ncbi.nlm.nih.gov/books/NBK25501/
3Since PMCVec is pre-trained on PubMed abstracts, there was no case where a

word did not have a vector representation.
4https://api.semanticscholar.org/
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extract citation data of the article using PMID. As introduced in
Section 3.3, we could not use the entire citation network because of
the limitation of computational andmemory footprint, thus we used
a partial citation network5. Starting from the articles that are in the
dataset, we looked backward and forward from the citation links
by following the semantic scholar identifier (SSID) to construct
the citation network. Not all of the articles in the semantic scholar
database have a PMID, instead, they have SSID. Therefore, the
citation network is constructed by SSID, but preserve the mapping
with the PMID.

For learning the citation network representations using LINE,
we used 3,158,195 vertices (articles) and 139,270,829 edges (citation
links) which is extracted from all 19 SRs and their citations. For
both first- and second-order proximity, we use 128 as the dimension
of each representation, and as LINE [46] proposed, concatenated
the first- and second-order proximity, resulting in 256 dimensions
for the citation network representation.

5.3 Evaluation Metrics
Cohen et al. [15] introduced a new measure work saved over sam-
pling (WSS). WSS measures the work saved over random sampling
for a given level of recall. WSS is defined as

WSS = (TN + FN )/N − (1.0 − R) (1)
where TN denotes true negatives, FN false negatives, N the total
number of articles, and R the recall. Cohen et al. used the special
modification of the WSS called WSS@95% which means WSS for
recall at 95%. Note that in some cases, the models may not achieve
exactly 95% recall. Thus, to calculate WSS@95%, we compute WSS
with the highest recall no less than 95%. In addition to WSS@95%,
someworks reported area under the receiver operating curve (AUC);
we use this as an additional evaluation metric.

5.4 Experimental Design
5.4.1 Inter-topic setting. As the Cohen dataset has 15 SR topics, we
evaluate MMiDaS-AE with non-topic specific settings. Specifically,
for model training, 14 SR topics are used to classify the one leftover
SR topic to evaluate the workload saved. We compare the result
with two existing works that used the same inter-topic settings.

• Norman: Norman et al. [40] constructs a ranker by extract-
ing bag-of-n-grams in titles, abstracts using TF-IDF and bi-
nary features. Also, article metadata such as keywords, jour-
nal name, and publication types are used as features.

• Cohen (2008): Cohen et al. [13] studies the performance
of Support Vector Machine (SVM) classifier using both tex-
tual (unigram and bigram terms of titles and abstract) and
conceptual (MeSH terms) features.

5.4.2 Intra-topic setting. Intra-topic is a topic-specific setting that
only uses training data within the same topic. Intra-topic assumes
that reviewers labeled small batches of articles. Previous works
used 5 × 2 cross-validation within each SR topics to evaluate intra-
topic. Under 5 × 2 cross-validation, each SR topic is divided into

5Weattempted to construct higher-order citations but found that not only crawling
the network took time, but LINE did not converge within 2 days on a machine with 16
CPU cores and 100GB RAM.

two parts – one split is used for training and the other as testing.
Then the roles of each half are switched. This entire process is then
is repeated 5 times. 5 × 2 cross-validation results in 10 experiments
and the final score is the average of the 10 experiment scores. We
compare the result with four existing works that use the intra-topic
setting.

• Cohen (2006): Cohen et al. [15] uses a voting perceptron
algorithmwith varying learning weights using bag-of-words,
MeSH terms, and publication type as their features.

• Khabsa: Khabsa et al. [27] uses textual features, co-citations,
and brown clustering as features to train a random forest
model.

• Norman: Norman et al. [40] uses the same method as ex-
plained in Section 5.4.1 but using the intra-topic setting with
5 × 2 cross-validation.

• Matwin: Matwin et al. [33] uses similar features to Cohen
et al. [15] but trained Complement Naive Bayes instead.

5.4.3 Fine-tuning setting. As we target the inter-topic setting that
learns a model to classify articles as a function of article-article
relations and article-topic relations, we propose fine-tuning our pre-
trainedmodel to evaluate ourmodel in the intra-topic setting. Under
the fine-tuning setting, we follow the inter-topic setting to pre-train
our model, then use an intra-topic setting (5× 2 cross-validation) to
fine-tune the weights of the pre-trained model. For example, if we
want to predict which articles are relevant for the “ACEInhibitors”
SR, then we use the other 14 SR topics to pre-train MMiDaS-AE first,
and then use one-half of articles in “ACEInhibitors” to fine-tune
the weights of the pre-trained MMiDaS-AE, reserving the other
half for testing. Then the roles of each half are switched. In other
words for each of the 10 intra-topic experiments, we use the same
pre-trained MMiDaS-AE that was trained with 14 SR topics but is
then fine-tuned on 50% of the topic-specific data. We repeat this
procedure 5 times, as same as 5 × 2 cross-validation. We report the
average estimated score across the 10 experiments.

5.4.4 Hyperparameter tuning. We found empirically that using a
unified length of the independent hidden layer performs better than
other settings. The unified length of the independent hidden layer
means learning all three representations into the same length. For
example, we use a 256-dimensional vector representation for net-
work representation and a 200-dimensional vector representation
for document and topic representation. We add an independent
hidden layer connected with the input representation with a 100-
dimensional vector representation, thus after these layers, all three
inputs will have equal dimensions. Also for the length of the shared
representation (encoding dimensions), we empirically discovered
that 50 works the best in our setting that balances the predictive
power and the error in the reconstructed representation. For the
activation functions in the multi-modal stacked autoencoder, we
use Rectified Linear Units (ReLUs) for all encoders and sigmoid
activation function for all decoders.

Between 15 topics from Cohen dataset, we left one topic out as
the test set and used the other 14 topics as the training set. The other
4 datasets, COPD, proton beam, anemia, and clopidogrel, are used
as a validation set to tune the hyperparameters and performed the
testing on the topic that was being held-out. For a fair comparison,
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Table 2: Comparison between MMiDaS-AE and other approaches in the inter-topic setting. Cohen et al. [13] only reported
AUC, thus we only compared WSS@95% score with Norman et al. [40]. Bold scores are the top scores while underlined scores
are the second best scores.

SR WSS@95% AUC
MMiDaS-AE Norman MMiDaS-AE Norman Cohen (2008)

ACEInhibitors 0.602 0.566 0.872 0.817 0.806
ADHD 0.661 0.128 0.727 0.591 0.469
Antihistamines 0.273 0.073 0.667 0.652 0.62
AtypicalAntipsychotics 0.244 0.162 0.758 0.759 0.653
BetaBlockers 0.445 0.400 0.850 0.837 0.801
CalciumChannelBlockers 0.381 0.129 0.894 0.759 0.712
Estrogens 0.256 0.176 0.705 0.693 0.588
NSAIDS 0.654 0.671 0.901 0.912 0.899
Opiods 0.678 0.301 0.885 0.885 0.856
OralHypoglycemics 0.115 0.072 0.654 0.657 0.573
ProtonPumpInhibitors 0.398 0.377 0.857 0.823 0.793
SkeletalMuscleRelaxants 0.502 0.241 0.848 0.828 0.836
Statins 0.341 0.266 0.819 0.826 0.773
Triptans 0.469 0.464 0.825 0.819 0.823
UrinaryIncontinence 0.451 0.374 0.895 0.887 0.851

we fixed the validation set to be these 4 datasets, so that SRs from
Cohen dataset are used only as training and test set. For the citation
network, we used all articles in the partial citation networks (from
all train, validation, and test sets), as LINE requires the entire graph
as the input. For articles that are present in multiple topics, we
remove the sample from the training to prevent data leakage and
only use it for testing.

6 EMPIRICAL RESULTS
In this section, we discuss the results from two different settings,
inter-topic and fine-tuning. Then we evaluate variants of MMiDaS-
AE using just one of the three features, different autoencoders
(shallow versus stacked), and our proposed imputation method in
the ablation study section.

6.1 Inter-topic Results
As MMiDaS-AE targets a general SR process where we do not as-
sume that we have any labels of the topic, we first use the inter-topic
setting. For the setting, we compare the obtained WSS@95% with
the values of WSS@95% reported in existing approaches discussed
in Section 5.4.1. Table 2 summarizes the results of our model in
the inter-topic setting. While Norman reported the scores for both
WSS@95% and AUC, Cohen (2008) only reported the AUC score.
Thus, we also computed the AUC score of MMiDaS-AE to be com-
parable with Cohen (2008).

As shown in the table, MMiDaS-AE outperforms Norman in
WSS@95% in a range from 1% (Triptans) to 416% (ADHD) except one
SR (NSAIDS). Based on the WSS@95% scores, MMiDaS-AE reduces
the reviewers’ workload by 464 articles compared with Norman,
which screens out 157 articles in CalciumChannelBlockers. For
Opioids, MMiDaS-AE excludes 1,298 articles while Norman saves
576.

For AUC,MMiDaS-AEmostly outperforms other approaches. For
the topics of AtypicalAntipsychotics, NSAIDS, OralHypoglycemics,
and Statins, the AUC is lower than Norman but not by a substantial
difference. This, coupled with the WSS@95% scores suggests that
MMiDaS-AEmay not perform aswell on lower recall on these topics.
Overall, the results show that with an inter-topic setting (non-topic
specific setting) MMiDaS-AE performs well with a reasonable score.
In other words, MMiDaS-AE works in a general case when we first
start SR.

6.2 Fine-tuning and Intra-topic Results
While the inter-topic setting assumes that we do not have any labels
for the SR topic, we can also assume that reviewers have labeled
small batches of articles. To make this comparison, we use the fine-
tuning setting, as discussed in Section 5.4.3, and compare the results
against other intra-topic approaches introduced in Section 5.4.2.
As they report the score only in WSS@95%, we only compare our
results in WSS@95% for this setting. The results are shown in
Table 3.

For Antihistamines and SkeletalMuscleRelaxants, according to
Cohen et al. [15], the classification process did not provide any
savings, thus are marked as 0.000 in “Cohen (2006)” column. Except
for two SRs, ADHD and Estrogens, MMiDaS-AE outperforms other
existing models. For ADHD, the size of the total articles as well
as the list of articles that pass the full-text screening are small,
thus, the fine-tuning process only marginally improves the results
(0.661 in the inter-topic setting versus 0.674 in the fine-tuining
setting). We also posit a similar issue with Estrogens, which is
that the total number of articles is small and thus fine-tuning only
marginally helps. More notably, for Statins, MMiDaS-AE saves
reviewers’ workload by 1,583 articles while Cohen (2006) saves 856,
Khabsa saves 1,386, and Matwin saves 1,091 articles.
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Table 3: Comparison between MMiDaS-AE with fine-tuning setting and other approaches in an intra-topic setting that uses
5 × 2 cross-validation. The scores are in WSS@95%. Bold scores are the top scores while underlined scores are the second-best
scores.

SR MMiDaS-AE Cohen (2006) Khabsa Norman Matwin

ACEInhibitors 0.693 0.566 0.469 0.629 0.523
ADHD 0.674 0.680 0.447 0.616 0.622
Antihistamines 0.287 0.000 0.03 0.149 0.149
AtypicalAntipsychotics 0.249 0.141 0.199 0.21 0.206
BetaBlockers 0.529 0.284 0.361 0.511 0.367
CalciumChannelBlockers 0.439 0.122 0.287 0.398 0.234
Estrogens 0.262 0.183 0.18 0.292 0.375
NSAIDS 0.671 0.497 0.404 0.537 0.528
Opiods 0.694 0.133 0.455 0.590 0.554
OralHypoglycemics 0.132 0.090 0.074 0.111 0.085
ProtonPumpInhibitors 0.431 0.277 0.288 0.307 0.229
SkeletalMuscleRelaxants 0.519 0.000 0.371 0.429 0.265
Statins 0.457 0.247 0.400 0.436 0.315
Triptans 0.485 0.034 0.312 0.303 0.274
UrinaryIncontinence 0.461 0.261 0.411 0.422 0.296

Table 4: Ablation study on each component. The scores are in WSS@95% using the inter-topic setting. The results of the
document, topic and citation network representation are using a basic autoencoder with a single input. A Shallow-AE is using
the concatenation of three representations as an input of the autoencoder. MMS-AE uses themulti-modal stacked autoencoder
implementation. And Imputation is the result when we apply the imputation technique to multi-modal stacked autoencoder.
All results are using binary classification for simplicity. The left side of the table denotes the individual component features,
and the right side of the table denotes different autoencoder settings with all three features. Bold scores are the best scores
in the right table while underlined scores are the best scores in the left table. We also compare the results using two different
pre-trained language models, PMCVec and SciBert.

SR Document
(SciBert)

Document
(PMCVec) Topic Citation Shallow-AE MMS-AE

(SciBert)
MMS-AE
(PMCVec) Imputation

ACEInhibitors 0.284 0.128 0.080 0.104 0.196 0.325 0.430 0.488
ADHD 0.122 0.179 0.124 0.283 0.133 0.210 0.212 0.297
Antihistamines 0.097 0.097 0.090 0.166 0.077 0.214 0.243 0.246
AtypicalAntipsychotics 0.064 0.057 0.061 0.119 0.053 0.094 0.156 0.171
BetaBlockers 0.127 0.279 0.088 0.141 0.235 0.291 0.319 0.377
CalciumChannelBlockers 0.063 0.028 0.107 0.137 0.060 0.117 0.123 0.152
Estrogens 0.054 0.055 0.086 0.158 0.078 0.165 0.194 0.217
NSAIDS 0.168 0.077 0.226 0.397 0.208 0.523 0.528 0.597
Opiods 0.182 0.180 0.124 0.232 0.020 0.220 0.268 0.379
OralHypoglycemics 0.034 0.029 0.082 0.028 0.019 0.082 0.080 0.108
ProtonPumpInhibitors 0.182 0.175 0.032 0.294 0.178 0.336 0.315 0.381
SkeletalMuscleRelaxants 0.238 0.225 0.167 0.364 0.154 0.406 0.489 0.495
Statins 0.139 0.174 0.125 0.066 0.157 0.234 0.237 0.292
Triptans 0.234 0.102 0.216 0.204 0.199 0.278 0.330 0.410
UrinaryIncontinence 0.040 0.124 0.215 0.273 0.314 0.316 0.317 0.323

6.3 Ablation Study
In addition to the results for the two settings discussed, we evaluate
the results achieved when we ablate the different components of
MMiDaS-AE, summarized in Table 4. First, we use a basic autoen-
coder to compress each of the three representations, (“Document”,

“Topic”, and “Citation”) and only train on the individual representa-
tion. “Shallow-AE” concatenates the features of all three represen-
tations and passes it to a single auto-encoder which is then passed
to a softmax layer. The “MMS-AE” is the multi-modal stacked au-
toencoder implementation [9] without any imputation. And finally,
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we show the results of our proposed imputation process. All the re-
sults are shown in Table 4 are only using binary classification with
full-text screening as a label (not multi-label classification task we
proposed in Section 4.3) with an inter-topic setting. Therefore, the
results are different from the results reported in Table 2 which also
demonstrates the added benefit of using multi-label classification
task. Also to evaluate the results with a larger pre-trained language
model, we compare the PMCVec representation with SciBert repre-
sentation using the “Document” and “MMS-AE” settings. We only
evaluated “Topic” using PMCVec as we also evaluate the result on
“MMS-AE”.

In comparing individual components in Table 4, if the test set has
a large number of articles in total, it leads to a highWSS@95%when
using the document representation only. For example, ACEInhibitors
has 2,544 articles in total, and Statins has 3,465 articles in total, and
both SRs have a relatively higher WSS@95% than other individual
components. There are cases when using only the citation represen-
tation is better. This also depends on the number of articles that lack
citation information. For example, ADHD has only 6% of articles
missing citation information and Opioids has 8% of articles missing
citation information, and both have higher WSS@95% for the cita-
tion representation than other individual components. However, for
ACEInhibitors 17% of articles are missing citation information and
Statins has 15% of articles missing citation information, thus both
have a lower WSS@95% than using only document representation.

Learning a classifier for SR is a difficult task as we only use
partial information (title, abstract, and MeSH terms) to predict
whether the article passed the full-text screening (where full-text
is not included as a feature). Our intuition is that citation network
representation can complement the lack of full-text information to
improve the overall performance as citations are used in the full-
text. In SR, although reviewers consider texts (title, abstract, and
full-text), this implicitly considers the co-citation information. By
comparing “Citation” and “MMS-AE” in Table 4, we can see cases
when WSS@95% of using only citation representation outperforms
multi-modal settings such as ADHD and CalciumChannelBlockers.
This demonstrates the usefulness of the citation information.

In most cases, Shallow-AE performs worse than individual com-
ponents which implies that the simple concatenation of representa-
tions does not learn a robust shared representation that encodes
all three representations. However, if we use MMS-AE, it performs
better in all topics compared to Shallow-AE. This suggests that
MMS-AE is learning a more robust shared representation than
Shallow-AE. Finally, if we apply the imputation technique proposed
in Section 4.2, it performs the best and can reduce the workload by
up to 59.7% compared to the MMS-AE. In addition, comparison be-
tween the WSS@95% scores in the “Imputation” column in Table 4
and the MMiDaS-AEcolumn in Table 2, shows a significant im-
provement through the introduction of the multi-label formulation
discussed in Section 4.3.

All the results shown in Table 2 and Table 3 are using PMCVec
for the document and topic features. However, we wanted to eval-
uate the difference in using approaches that exploit pre-trained
representations induced by large transformers such as SciBert [7].
We compared the results using SciBert and PMCVec on “Document”
and “MMS-AE” in Table 4. As shown, for most of the cases when

using single-component (only document as a feature), SciBert per-
forms better than PMCVec. But when using the MMS-AE setting,
PMCVec outperforms SciBert in most of the cases. This illustrates
the importance of the number of dimensions in MMS-AE. We note
that the dimension of SciBert is 768 while the dimension of PMCVec
is 200. When using a single-component, we can select the size of the
hidden layer based on the input dimension. However, for MMS-AE,
the three features are encoded into a shared representation, and it
becomes difficult when the dimension of one input differs greatly
from the other input. In other words, there will be information lost
from the input feature with a larger dimension when learning the
shared representation. Thus, in MMS-AE, information from Doc-
ument and Topic is lost when learning the shared representation
and consequently performs worse than the single-component.

7 CONCLUSIONS AND LIMITATIONS
In this paper we proposed using the Multi-modal Missing Data
aware Stacked Autoencoder (MMiDaS-AE) — inspired by [9] — for
biomedical citation screening. The aim is to reduce the workload
involved in the systematic review process via semi-automation. We
showed that this multi-modal approach, which treats title/abstract
texts, citation networks, and topics as separatemodalities and explic-
itly models these, outperforms prior models in inter-topic settings.
Further, in the topic-specific (intra-topic) setting, our fine-tuned
MMiDaS-AE outperforms alternative approaches.

This provides evidence that capitalizing on three (potentially
complementary) representations is a promising approach. The main
strength of MMiDaS-AE is that the model is able to handle missing
data via imputation. Imputation while training makes the multi-
modal stacked autoencoder learn a more robust shared representa-
tion. Even if some of the test data is missing a particular modality,
MMiDaS-AE can find a robust shared representation. Also as shown
in the ablation study, co-citation information and the citation net-
work representation plays an important role in the performance.
Thus, citation representation can support the SR process.

There are important limitations to this study. First, we have
only experimented on a small collection of 15 systematic reviews,
which are very related in topic. This is an ideal scenario for transfer
learning, and it is not clear if fine-tuning pre-trained models would
be as efficient when considering a more diverse set of topics. We
aim to next evaluate the model on a completely held out set of
systematic reviews to assess generalizability.
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