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Sepsis and septic shock are common and potentially fatal conditions that often occur in intensive care unit
(ICU) patients. Early prediction of patients at risk for septic shock is therefore crucial to minimizing the
effects of these complications. Potential indications for septic shock risk span a wide range of measurements,
including physiological data gathered at different temporal resolutions and gene expression levels, leading
to a nontrivial prediction problem. Previous works on septic shock prediction have used small, carefully
curated datasets or clinical measurements that may not be available for many ICU patients. The recent
availability of a large, rich ICU dataset called MIMIC-II has provided the opportunity for more extensive
modeling of this problem. However, such a large clinical dataset inevitably contains a substantial amount
of missing data. We investigate how different imputation selection criteria and methods can overcome the
missing data problem. Our results show that imputation methods in conjunction with predictive modeling
can lead to accurate septic shock prediction, even if the features are restricted primarily to noninvasive
measurements. Our models provide a generalized approach for predicting septic shock in any ICU patient.
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1. INTRODUCTION

Sepsis is a systemic response to infection that is a common and life-threatening in-
hospital complication, causing more deaths than prostate cancer, breast cancer, and
HIV/AIDS combined [WSD Coalition 2012]. Despite modern medical advancements,
the number of sepsis cases has doubled over the last 10 years, with an estimated $14.6
billion spent on hospitalizations for sepsis in 2008 alone [Hall et al. 2011]. Sepsis is one
of the leading causes of mortality in intensive care unit (ICU) patients [Lukaszewski
et al. 2008]. Severe cases of sepsis often lead to septic shock, a condition character-
ized by hypotension (low blood pressure) despite treatment that dramatically increases
mortality risk [Bone et al. 1992]. Early intervention and therapy have been shown to
improve the outcome of patients with severe sepsis and septic shock [Kumar et al. 2006;
Nguyen et al. 2007; Rivers et al. 2001], thus making accurate identification of patients
at risk for developing these conditions crucial to improving standards of clinical care.
Development of highly accurate predictive models for medical applications is often
complicated by the nature of clinical data, which are typically noisy and inconsis-
tently gathered. For example, while physiological variables such as heart rate may
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be electronically monitored, these measurements must often be manually recorded in
a patient’s chart by a healthcare provider, potentially leading to erroneous or irreg-
ularly sampled data. Furthermore, highly accurate measurements for some physio-
logical variables require invasive techniques that would place patients at unnecessary
risk (e.g., accurate blood pressure measurements require arterial catheterization), and
therefore cannot be ethically gathered. In such cases, the only available data are less
accurate measurements obtained by noninvasive means.

As a result, clinical studies must often deal with missing data. A commonly used so-
lution for this problem is to simply ignore subjects or features that have missing data.
However, doing so can cause dramatic decreases in sample sizes or feature spaces.
Furthermore, the reduction may hinder the development of accurate models and only
generalize to a small population. Previous works on predicting the onset of septic shock
have generally avoided the missing data problem by restricting themselves to very
modest, highly curated datasets with small number of patients and limited sets of
features.

To build a predictive model for septic shock onset generalizable to larger groups of
ICU patients, we make use of the MIMIC-II database [Saeed et al. 2011], one of the
largest publicly available clinical datasets, with data for >30,000 patients and >40,000
ICU admissions. As with any large database, missing data are a pervasive problem.
To fully utilize these data, our work investigates the role and impact of imputation
methods while building predictive models for septic shock. We limit our features to
commonly observed, mostly noninvasive clinical measurements that are continually
monitored across the entire patient population. We demonstrate that imputation meth-
ods allow us to build better predictive models for septic shock risk that are generaliz-
able to broader groups of ICU patients and allow for earlier diagnosis and intervention
for at-risk patients.

The main contributions of our work are as follows.

— We use simple and accessible approaches to handle patients with partially missing
observations.

— We utilize noisy and/or intermittently gathered noninvasive measurements as prox-
ies for their invasive and potentially risky counterparts.

— We develop a model that can identify high-risk septic shock patients for additional
monitoring using invasively gathered techniques.

— We introduce a customizable performance-oriented imputation (POI) algorithm to
optimize performance objectives beyond traditional metrics such as AUC.

2. BACKGROUND AND RELATED WORK

This work uses the definitions for sepsis and septic shock established during the 1991
American College of Chest Physicians/Society of Critical Care Medicine Consensus
Conference.

Definition 2.1 (Sepsis). Sepsis is a severe, systemic inflammatory response and is
diagnosed when a patient has an infection (or evidence of an infection) that is asso-
ciated with two or more of the following nonspecific systemic inflammatory response
syndrome (SIRS) abnormalities: (1) abnormal body temperature, (2) increased heart
rate, (3) increased respiratory rate, or (4) abnormal white blood cell counts [Bone et al.
1992].

Definition 2.2 (Septic Shock). Septic shock is “sepsis-induced hypotension, persist-

ing despite adequate fluid resuscitation, along with the presence of hypoperfusion ab-
normalities or organ dysfunction” [Bone et al. 1992]. Septic shock onset occurs when
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a patient has systolic blood pressure <90 mmHg and >600 mL of fluid input over the
last hour [Bone et al. 1992; Shavdia 2007].

Prior research has focused largely on predicting the outcome of sepsis patients. A
study conducted to assess the accuracy of mortality prediction systems on ICU patients
with severe sepsis and septic shock showed that several of these systems had adequate
accuracy but poor calibration [Arabi et al. 2003]. Fuzzy models and knowledge-based
neural networks were used to predict the outcome of 121 patients with abdominal sep-
tic shock [Fialho et al. 2010]. Lagu et al. introduced a multilevel mixed-effects logistic
regression model using patient demographics, presence of comorbidities, treatment,
and ICU admission status as features to predict sepsis mortality [Lagu et al. 2011].
Another paper proposed the use of a logistic regression using extracted latent factors
to predict mortality in severe sepsis patients [Ribas et al. 2012].

More recent work has concentrated on early prediction of septic shock. A septic shock
early warning system (EWS) was developed using multivariate logistic regression with
commonly measured clinical variables as features to predict septic shock one hour
prior to onset [Shavdia 2007]. The EWS used data from 250 sepsis patients, 65 of
whom developed septic shock, and achieved an area under the receiver operating char-
acteristic curve (AUC) of 0.928. However, the model used invasively gathered features,
such as central venous pressure and five laboratory results, data that may not be com-
monly available in ICU patients. Another study used a rule-based approach to notify
clinicians of patients requiring specific treatment and monitoring [Nguyen et al. 2007].
Thiel et al. developed a predictive model using a Recursive Partitioning and Regres-
sion Tree (RPART) to identify early predictions from clinical data of 1,864 hospitalized
non-ICU septic patients [Thiel et al. 2010]. The model used eleven routine laboratory
tests and certain vital signs but only correctly identified 55% of septic shock patients.
However, these models all failed to address the missing data problem.

Some models have been developed to predict septic shock in the absence of full fea-
ture data. Paetz inserted randomly sampled data from a suitable normal distribution
to deal with incomplete data and prevent the model from erroneous learning via miss-
ing values [Paetz 2003]. The outcome was then predicted using a trapezoidal func-
tion neural network to classify 874 patients. The model required at least 10 of the 12
variables to be present and could only correctly classify ~70% of the test data with a
sensitivity of 15.01%. Another study proposed the use of a modified Fuzzy C-Means
algorithm with Partial Distance Strategy (FCM-PDS) that does not require any impu-
tation of the missing values by means of product-space clustering [Pereira et al. 2011].
The authors also suggested the combination of Zero-Order-Hold (ZOH), which holds
the measurement value until a new observation is available, to deal with incomplete
data and FCM-PDS to predict abdominal septic shock. Although the model perfor-
mance obtained an AUC of 0.899 on 121 patients, the features rely heavily on labo-
ratory results and other invasive measurements. Additionally, it is uncertain whether
this model is predictive for all septic shock patients or is limited to only those patients
with abdominal sepsis.

Various imputation methods have been developed to address the missing value
problem in medical settings. One study conducted a comparison of statistical and
machine learning techniques on predicting breast cancer [Jerez et al. 2010]. The re-
sults showed that machine learning algorithms—in particular, multilayer perceptrons,
self-organization maps, and k-nearest neighbors (KNN)—generally outperformed sta-
tistical techniques such as hot deck, mean, and multiple imputation. Another paper
proposed the combination of a multiple imputation approach based on fuzzy clustering
and an ensemble of weak classifiers trained on random subspaces that performed well
across a host of medical problems [Nanni et al. 2012].
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We have recently shown that combining matrix-factorization-based imputation tech-
niques and standard classification models can be used to predict septic shock in ICU
patients [Ho et al. 2012]. This article is an extension of that work and focuses on fur-
ther minimizing the use of invasive clinical measurements and introducing prediction-
aware imputation selection criteria.

3. MISSING DATA IMPUTATION

Traditional approaches decouple predictive modeling with incomplete data into two
stages; first, missing data are imputed, and second, predictive models are built us-
ing the imputed data. We use three simple and accessible approaches to estimate the
missing observations.

(1) Mean (or median) imputation uses either the mean (or median) value of nonmiss-
ing observations to fill in missing values. This method is surprisingly effective on
recommendation systems.

(2) Matrix-factorization-based techniques for missing values use a specific feature
matrix decomposition. We used three estimators provided by the BioConductor
pcaMethods package [Stacklies et al. 2007].

— Singular-value-based decomposition imputation (SVDImpute) uses a linear
combination of k-eigenvalues to predict the missing value [Troyanskaya et al.
2001].

— Probabilistic Principal Component Analysis (PPCA) combines an Expectation
Maximization (EM) approach to Principal Component Analysis (PCA) with a
probabilistic model [Roweis 1998].

(8) Neighborhood-based imputation finds the k-nearest neighbors (KNN) with
nonmissing observations and uses their averages to impute missing values [Hastie
et al. 2012].

The methods listed previously span the “global to local” imputation space. Mean
imputation is the most global approach available where a patient’s missing observa-
tion is influenced by measurements from all of the other patients in the population.
Neighborhood-based imputation is on the opposite end of the spectrum, using local
information (small subset of the patient population) to determine the missing value.
Matrix factorization methods can be viewed as a combination of the two approaches,
imposing a global structure where the individual matrix values are then influenced by
a smaller dimensional space. Matrix factorization and neighborhood-based imputation
methods have a parameter £ which controls the resolution or locality of the imputation.

Imputation methods are primarily evaluated by randomly removing observations
and comparing the values of imputed versus original using a difference metric such
as root mean squared error (RMSE) or mean absolute error (MAE). However, these
evaluation measures may not always be appropriate. A recent study of recommenda-
tion systems, such as Amazon and Netflix, showed that improvements in RMSE do not
necessarily translate to the task of recommending the top-IV items and proposed alter-
native metrics for these systems [Cremonesi et al. 2010]. Similarly, we expect impu-
tation methods selected using RMSE or MAE can be suboptimal for clinical predictive
models that are evaluated by other metrics. Thus, we propose a performance-oriented
imputation (POI) algorithm which selects the imputation method via the performance
metric (e.g., F-score and lift) used to evaluate the predictive model.

The POI algorithm finds the optimal number, %, for SVDImpute, PPCA, and KNN
dependent on the selection criterion, sc. The algorithm creates J copies of the data,
randomly removing some percentage of the data. For each copy, grid search over a
predefined set K is performed to evaluate the imputed feature matrix according to
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sc. POI selects the £ that yields the optimal evaluation measure. The general POI
framework is outlined in Algorithm 1.

ALGORITHM 1: POI algorithm for matrix-factorization or clustering based approaches.

Input: Data set, imputation method, selection criterion, and J
Output: Optimal &
Randomly create J train/test splits for the data set for % in K do
forjin I:J do
Dataj = Remove x% of the data
Imputepqsq = Impute(Data;, k)
Split Imputepy;, into I folds
foriin 1:1 do
Separate into Train; and Test;
Model = BuildModel(Train;)
Errorij = EvaluateSelectionCriteria(Model, Test;, s)
end
dEvalueJ- = Mean(Erroryj, ..., Errory;) - Standard Deviation(Erroryj, ..., Errory;)
en
Valuej, = Mean(Evaluey, ..., Evaluej) - Standard Devation(Evalueq, ..., Evalue)
end
Select £ = Max(Valueq, ..., Valueg) or Min(Valueq, ..., Valueg)

4. EXPERIMENTS
4.1. Data

The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database
is a publicly available resource developed to support research in clinical decision
support and critical care medicine [Saeed et al. 2011]. Version 2.6 of this database
provides data on >30,000 patients in the ICUs of Boston’s Beth Israel Deaconess Med-
ical Center between 2001 and 2007. The clinical records include charted physiological
measures, medication records, fluid input and output records, laboratory test results,
procedure orders, and free-form text notes produced for each of the >40,000 ICU stays
recorded in the database.

The study was conducted on septic adults (>18 years of age at time of admission)
from the MIMIC-II database with a single ICU admission over the course of their
hospital stay. Patients younger than 18 years of age were omitted to avoid: (1) con-
founding factors arising from different physiologies and (2) complications associated
with obtaining informed consent from such parents. To ensure sufficient data, we only
used patients with at least ten observations of blood pressure (BP) taken noninva-
sively, heart rate (HR), respiratory rate (RR), blood oxygen saturation (SpO,), temper-
ature (TEMP), and two observations of white blood cell count (WBC) during their ICU
stay. Potential septic patients were identified based on their ICD-9 codings (“995.91”
or “995.92”). Sepsis patients must have at least one interval that met the SIRS criteria
listed in Definition 2.1.

Septic shock patients were identified through their ICD-9 code (“785.52”). Time of
septic shock onset was determined using modified criteria based on Definition 2.2.
Any time point where the systolic blood pressure (SBP) was <90 mmHg and within
a SIRS interval was marked as a hypotension observation. Consecutive hypotensive
observations were aggregated together to define a hypotension region. Total fluid in-
take was calculated starting one hour prior to the hypotension observation to halfway
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Table I. Features for Predicting Septic Shock

Last measurement, min, mean, and max of observations in the last 8 hours

Cardiac: non-invasive systolic and diastolic blood pressure, heart rate, pulse pressure
Respiratory: respiratory rate, SpOg

Other: temperature

Last measurement only
White blood cell count
SOFA

SAPS-I

Shock index

through the hypotension region [Shavdia 2007]. Shock onset was defined as the start
time of any hypotension region with total fluid intake >600 mL.

From 27,542 adult ICU stays in the MIMIC-II database, 2,175 had the sepsis di-
agnosis code and 1,027 also had the septic shock ICD-9 code. However, we could only
identify at least one SIRS interval for 1,353 of the potential septic patients. Moreover,
we were unable to detect the time of shock onset for a significant portion of the patients
with the septic shock ICD-9 code. Thus, only 213 of the potential septic shock patients
were used as positive cases in the study, with the remaining 814 adults omitted from
the study. Our study was conducted on 1,353 septic patients where 213 (~15.7%) tran-
sitioned to septic shock.

4.2, Septic Shock Prediction Features

As explained before, we focus on using common, mostly noninvasive measurements
as features for predicting septic shock onset. Basic patient information in the form
of demographic data (gender and ages at hospital and ICU admission), medical his-
tory (flags indicating previous hospital and ICU admissions), and ICU care unit are
included. Physiological and laboratory features are chosen based on prior studies, in-
vasiveness, and measurement frequency. White blood cell count is the only invasive
clinical feature and can be used to diagnose septic patients (Definition 2.1). The fea-
ture set includes two derived features: (1) pulse pressure, calculated as the difference
between systolic and diastolic blood pressure, and (2) shock index [Allgower and Burri
1967], based on heart rate and systolic blood pressure; and two daily mortality scores:
(1) SOFA [Ferreira et al. 2001] and (2) SAPS-I [Le Gall et al. 1984]. Unlike previ-
ous work that focused on using the last measurement, difference between last several
measurements, and mean of the last several measurements [Shavdia 2007; Ho et al.
2012], our current model uses summary statistics (minimum, mean, and maximum)
in addition to the last recorded measurement from the last 12 hours before onset for
physiological variables. The inclusion of summary statistics allows the model to cap-
ture variability in a patient’s physiological state [Kennedy and Turley 2011]. Table I
lists the features used to predict septic shock in ICU patients.

4.3. Evaluation

A feature matrix of physiological and laboratory values was generated for data avail-
able at reference time, defined as a specified time prior to shock onset. SIRS patients
that did not transition to septic shock were assigned a random evaluation time during
the first SIRS interval. Each feature matrix contains the basic patient information and
the list of features shown in Table 1. All features, except shock index, were normalized
to the [0, 1] range following the procedure outlined for the septic shock early warning
system (EWS) [Shavdia 2007]. Feature matrices were created for reference times 30,
60, 90, 120, and 180 minutes prior to shock onset or evaluation time.
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400

10 11 12 13 14 15 16 17 18 19 22
Number of Missing Features

Fig. 1. Histogram of the number of missing features for each patient at reference time ¢ = 30 minutes.

Table Il. The Availability of Clinical Measurements

% Missing
Reference time
Feature 30 mins 60 mins 90 mins 120 mins 180 mins
Respiratory rate 0.67 0.68 0.71 0.64 0.67
SpOy 0.81 0.68 0.55 0.64 0.42
Temperature 1.70 2.05 1.80 1.77 1.85
White Blood Cells 15.30 14.69 14.67 14.16 14.61
Systolic/Diastolic 23.28 23.44 23.69 23.73 24.01
SOFA 60.24 59.74 59.22 58.81 58.10
SAPS-I 63.05 62.48 62.04 61.54 60.96

Patients with >40% missing features were omitted from the study. Figure 1 demon-
strates the importance of missing value imputation due to the lack of consistent
sampling of clinical data. The problem is heightened by restricting the physiological
measurements to the last 12 hours. At reference time ¢ = 30 minutes, only 176 of the
1,353 patients have complete data. Table II shows the percentage of missing observa-
tions per feature.

Multivariate logistic regression, linear kernel support vector machine, and decision
trees (RPART) were used to predict septic shock on the feature matrices. These models
were selected based on their usage in previous septic shock work. Variable selection
for logistic regression was performed using three different methods:

(1) Lasso (least absolute shrinkage and selection operator) [Hastie et al. 2008];
(2) Ridge regression [Hastie et al. 2008];
(3) Elastic net with different penalties on £1 and ¢ [Friedman et al. 2010].

The predictive performance of the various models was evaluated using 10 stratified
bootstrap samples, with 60% of the data used for training. The evaluation metrics se-
lected for our study are: (1) AUC, (2) lift, (3) F'1, or F-score, (4) Fy which emphasizes
recall higher than precision, and (5) Fy 5 which gives higher weight to precision over
recall. Note that for lift and the F-measures, a windowed average is used to increase
stability of the metric instead of a single, potentially noisy evaluation point. The se-
lection criteria for %, the optimal number of principal components for SVDImpute, and
PPCA or the number of nearest neighbors in kNN, was: (1) MAE, (2) RMSE, (3) AUC,
(4) F1, (5) Fy, (6) Fy 5, and (7) lift. For both mean and median imputation, the condi-
tional mean or median value based on the patient’s age and gender group was used.
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Table Ill. Wilcoxon-Mann Whitney Test Results for Determining if the Complete
and Missing Population Distributions are Different

Missing Complete
Reference Time  Sepsis only Shock Sepsisonly Shock  P-value
30 749 79 199 110 4.56e-26
60 723 79 196 106 6.99e-24
90 705 79 196 103 4.63e-22
120 685 74 193 103 7.06e-23

Table IV. AUC Comparison with the Septic Shock EWS Model 60 Minutes
Prior to Shock Onset

Feature Selection = EWS Features POI for Septic Shock Features

All 0.72240.060 0.789+0.074
Forward stepwise 0.780+0.078 0.796+0.091
Backward stepwise 0.75240.062 0.772+0.090

Our feature set uses a smaller and simpler set of measurements, thus
making it applicable to a broader patient population (see text for details).

4.4. Feature Set Evaluation

The first series of experiments first compared the POI features with the septic shock
early warning system (EWS) [Shavdia 2007] feature set second, verified the need for
imputation even with common clinical measurements, and lastly motivated the use of
noninvasive features to cater to a broader patient population.

The EWS feature matrices [Shavdia 2007] were replicated to compare the distribu-
tion of sepsis patients progressing to septic shock. The Wilcoxon-Mann Whitney test
was performed to test the null hypothesis that the prevalence of shock in the complete
dataset is stochastically greater than in the patients with at least one missing feature
dataset. Table III summarizes the results for the reference times and shows the differ-
ence in prevalence is statistically significant. Thus, imputation helps us generalize to
a larger and more representative ICU patient population.

We evaluated our septic shock features against the replica EWS features. For
comparison purposes, patient demographics were excluded from our feature set and
arterial blood pressure measurements were used instead of their noninvasive counter-
parts. Additionally, EWS features utilized three measurements of arterial pH while
our feature set contained a measurement each of SAPS-I and SOFA scores. Any pa-
tient without complete data for either EWS or our modified features was omitted. The
dataset was reduced to 149 sepsis patients, of which 86 transitioned to septic shock.
Three logistic regression models were trained for each set of features: (1) all the fea-
tures, (2) forward stepwise regression, and (3) backward stepwise regression.

Table IV summarizes the mean AUC and the 95% confidence interval for predicting
septic shock 60 minutes before onset. The results demonstrate a noticeable perfor-
mance degradation from the reported 0.928 to 0.780. This can be attributed to differ-
ences in the two patient cohort studies, as the original EWS dataset consisted only of
110 patients. Our septic shock features, which use a smaller and simpler set of mea-
surements (omitting arterial pH), had a higher mean AUC across all three selection
types. However, the improvement is not statistically significant, as the EWS perfor-
mance is within the confidence range.

Table V illustrates the benefit and pitfall of substituting noninvasive blood pressure
measurements for the arterial blood pressure measurements. Although more patients
have at least one noninvasive measurement, the average time between measurements
increases by a factor of 1.5 and results in less total blood pressure measurements.
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Table V. Patient Statistics for the Two Types of Blood Pressure Measurements

Measurement  Patients (#) Avg. Interval (mins) Avg. measurements (#)
Arterial 682 45.79+28.27 60.96+87.00
Non-invasive 1323 56.14+72.28 25.18+40.85

Table VI. AUC Comparison of Forward Selection Logistic Regression Model Trained on Complete
versus Mean Imputed Data

Reference time ¢ before onset

Train Test 30 min 60 min 90 min 120 min

Complete Complete 0.796+0.065 0.7774+0.050 0.7634+0.034 0.731+0.073
Complete Mean Impute  0.815+0.033  0.800+0.053 0.803+0.036  0.786+0.067
Mean Impute  Mean Impute  0.834+0.025 0.829+0.030 0.834+0.023  0.801+0.051
Mean Impute  Complete 0.839+0.044  0.828+0.047 0.809+0.033 0.783+0.062

Table VII. AUC Comparison of Different Models at ¢ = 120 min

Model Type

Impute  Selection ¢1 LogR Elastic-net (« = %) ¢9 LogR RPART SVM

Mean None 0.739+0.031 0.744+0.031 0.759+0.020  0.689+0.052  0.744:+0.032
Median  None 0.746+0.036 0.754+0.034 0.770+£0.019  0.690+0.054  0.742+0.031
SVD POI 0.723+0.056 0.737+0.040 0.704+0.040  0.634+0.090  0.697+0.054
SVD MAE 0.741+0.028 0.749+0.024 0.765+0.021  0.716+0.045  0.747+0.024
SVD RMSE 0.650+£0.037 0.657+0.034 0.695+0.035 0.635+0.042  0.649-+0.038
PPCA POI 0.698+0.040 0.687+0.040 0.672+0.064  0.585+0.092  0.650-0.072
PPCA MAE 0.706+0.072 0.717+0.073 0.742+0.060  0.645+0.063  0.695+0.065
PPCA RMSE 0.701+0.069 0.713+0.073 0.734+0.061  0.641+0.059  0.685+0.064
KNN POI 0.733+0.033 0.746+0.029 0.758+0.022  0.673+0.037  0.733+0.031
KNN MAE 0.735+0.033 0.747+0.029 0.759+0.022  0.671+0.041  0.744+0.026
KNN RMSE 0.735+0.033 0.746+0.029 0.759+0.022  0.671+0.040  0.744+0.026

Additionally, invasive blood pressure measurement requires arterial catheterization,
a procedure that places patients at risk for severe complications and is therefore not
medically necessary in all cases. To address the larger ICU population, our feature set
will only use noninvasive blood pressure measurements.

One approach for predicting septic shock on all patients is to train on patients with
complete data and use mean imputation to perform prediction for patients with miss-
ing observations. Table VI illustrates the potential benefit of training on imputed data.
Models trained on the mean imputed data generally outperform the models trained
only on complete data. An additional benefit of imputation is lower AUC variable com-
pared to the model trained and tested only on complete data. Furthermore, the results
suggest that imputation does not bias the models and can be used to generalize to a
broader population.

4.5. Results on Noninvasive POI

The remaining studies use only noninvasive features listed in Table I. Thus, the models
are applicable to the broader ICU patient population.

Table VII summarizes the imputation effect on AUC performance across the
different models at reference time ¢ = 120 mins. Mean and median imputation gen-
erally outperform the matrix-factorization- and neighborhood-based imputation meth-
ods. However, SVD imputation using the MAE selection criteria achieves the best AUC
performance for the decision trees and SVM models. The results also show that KNN
has similar performance to mean and median imputation.
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Fig. 2. {9 regularized logistic regression model results trained on SVD imputed data at the various refer-
ence times ¢.

Figure 2 summarizes the average ROC curves and the optimal % for the ¢9 reg-
ularized models trained on SVD imputed data. The mean imputation ROC curve is
also included in Figure 2(a) for comparative purposes. Mean imputation and the MAE
selection criteria consistently outperform both the RMSE and POI selection criteria.
Note that MAE is marginally better than mean imputation for false positive rates
below 0.50. The optimal % plot, Figure 2(b), helps explain some of the performance dif-
ferences between MAE, RMSE, and POI. MAE repeatedly chooses the largest £ while
RMSE selects a small k. The large variability of £ for the POI selection criteria at
t = 60 results in an ROC curve halfway between MAE and RMSE.

A septic shock alert system focuses on reducing the false positives. Thus, the Fy 5
measure may be a more applicable performance metric. Table VIII summarizes the
results across four of the predictive models three hours (180 minutes) prior to shock
onset. These results demonstrate the potential of our POI algorithm. SVD imputation
using the POI selection criterion achieves better predictive perfomance for ¢1 and ¢o
regularized logistic regression, decision tree, and SVM. For the ¢ regularized logistic
regression model, the POI selection criterion performs the best compared to MAE,
RMSE, and mean imputation. However, the POI selection criterion does not always
result in the best performance as illustrated by the PPCA imputed models. Except for
the ¢9 regularized logistic regression model, the F 5 values are significantly below the
mean imputation and PPCA imputation using MAE and RMSE. This suggests that
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Table VIII. Fy 5 Measure Comparison of Different Models at ¢ = 180 min

Model Type

Impute  Selection ¢1 LogR ¢9 LogR RPART SVM

Mean None 0.397+0.028  0.351+£0.040 0.253+0.072  0.379+0.037
SVD POI 0.403+0.028  0.373+0.047 0.291+0.107  0.383+0.034
SVD MAE 0.402+0.025 0.357+0.033  0.280+0.084  0.389+0.038
SVD RMSE 0.388+0.033  0.368+0.045 0.343+£0.091 0.360+0.028
PPCA POI 0.265+0.140  0.363+£0.040  0.233+0.078  0.235+0.110
PPCA MAE 0.383+£0.041  0.347+0.029  0.195+0.086  0.337+0.031
PPCA RMSE 0.384+0.041  0.350+0.028  0.188+0.084  0.342+0.031
KNN POI 0.376+0.032  0.353+0.038  0.237+0.071  0.380+0.041
KNN MAE 0.380+£0.032  0.354+0.040  0.255+0.053  0.383+0.037

KNN RMSE 0.375+0.037  0.353+0.042  0.244+0.051  0.381+0.042

SVD PPCA ‘ KNN SVD PPCA KNN
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Fig. 3. Predictive performance across three imputation methods using POI, RMSE, and MAE selection
criteria at reference time ¢ = 60.

during the selection of the optimal %, the models may be overtrained and thus do not
generalize well to the test data.

Figure 3 shows the results for two predictive models, the £; regularized logistic re-
gression and SVM, evaluated using AUC, lift, and F-score. MAE generally has the best
performance across both models, but POI outperforms MAE and RMSE on the three
measures for logistic regression models trained on PPCA imputed data and on AUC
and F-score for SVM trained on KNN imputed data. These results suggest no single
imputation method and selection criterion consistently yields the best performance.

Table IX illustrates the effect of the various selection criteria on feature ranking
pertaining to the physiological measurements. PPCA imputation is used in conjunc-
tion with an elastic-net regularized logistic regression model. The most recent systolic
blood pressure is the single most important feature across all the different models, as
the magnitude of the coefficient associated with systolic blood pressure is the largest.
Noticeable differences between the mean imputation and the PPCA imputations are
the mean systolic blood pressure, mean respiratory rate, mean temperature, and the
last diastolic blood pressure values. Even within the same imputation method (PPCA),
selection criteria influences feature ranking. The last temperature reading is absent
from the RMSE model and both MAE and RMSE place higher value on the shock in-
dex compared to the mean systolic blood pressure. Thus, the selection of £ based on the
selection criteria influences which measurements will be more important.

1

The selection of & for the elastic-net regularized logistic regression with « = 7 is
shown in Figure 4. Both SVD and PPCA imputation are heavily impacted by the
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Table IX. Mean Feature Ranking of the Physiological Measurements by
Magnitude for an Elastic-Net (o = %) Regularized Logistic Regression

Feature Mean AUC Lift Fq MAE RMSE
Systolic BP 1.50 1.70 1.80 1.70 2.70 2.40
Systolic BP (min) 4.00 3.00 3.40 3.50 2.56 2.89
SpOsy 2.22 3.00 3.00 3.22 3.22 2.56
Systolic BP (mean) 6.11 3.50 4.30 4.70 5.43 5.00
Shock Index 4.40 4.40 4.80 4.60 3.20 3.30
Temp 5.00 5.00 7.50 7.50 6.00

Resp Rate (mean) 7.33 5.67 7.67 7.67 6.25 6.67
Temp (min) 5.17 6.00 6.40 6.33 7.50 8.00
Temp (mean) 9.33 7.00 6.50 6.50 11.50 6.00
Pulse Pressure (min) 9.25 7.00 7.00 7.00 9.50 8.00
SpOs2 (mean) 8.67 7.67 7.00 7.00 6.67 7.00
Resp Rate 7.57 7.75 6.33 6.50 8.25 7.00
Diastolic BP 11.00 8.00 8.75 8.25 7.00 5.00
WBC 8.75 8.33 9.75 9.50 8.75 7.33
SOFA 9.50 9.00 9.20 9.60 9.00 7.80
SpOs2 (min) 9.38 9.50 9.33 9.33 7.40 7.00
SAPS-I 11.50 12.00 1140 11.40 10.44 8.25
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Fig. 4. Box plot of the optimal % for the different selection criteria and imputation methods using elastic

net with a = %

selection criteria. For SVD, MAE and RMSE favor the two extremes and have less
variability, while the POI selection criterion tends to span the entire search space. The
pattern does not hold for PPCA as the POI selection criterion consistently results in
smaller k2. KNN imputation favors a larger k& across all the criteria, thus the perfor-
mance results are generally similar to mean imputation.

The focus on noninvasive measurements allows us to apply our models to a broader
population of patients, especially those for whom arterial catheterization is not med-
ically necessary. The models can be used as a screening process to identify patients
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Fig. 5. Linear SVM model precision recall curves trained on SVD imputed data at various reference
times £.

in need of closer monitoring. Figure 5 shows the precision recall plots comparing the
three F-measures and standard RMSE selection criterion for the SVM trained on SVD
imputed data. The results show that the F9 selection criterion results in a higher pre-
cision for recall below 0.25. This results in fewer false positives while also identifying
patients at high risk of developing septic shock.

4.6. Discussion

The experimental results demonstrate that imputation methods can help provide
an accurate assessment of septic shock risk when features are restricted primarily
to noninvasive clinical measurements and patients have partially missing observa-
tions. Simple mean imputation generally outperformed the matrix-factorization- and
neighborhood-based imputation techniques. However, the POI algorithm achieved bet-
ter results for some classification models and performance metrics.

The following factors may have impacted the performance of POI. First, the features
were normalized following the procedure outlined for EWS [Shavdia 2007], favoring
simple mean imputation. Second, the robustness of several of the performance met-
rics makes it easy to overfit the training data. Although windowed averaging was
used to stabilize the lift and F-measures, additional model regularization may im-
prove the POI algorithm. Finally, the small number of case patients for testing (85
patients) potentially resulted in high variance of performance metrics. Minor pertur-
bations of the classification output can cause drastic changes for lift and the three
F-measures. Further exploration of the POI algorithm on various datasets can help
differentiate under what conditions simple imputation- (mean or median), traditional
matrix-factorization-, and neighborhood-based approaches (MAE and RMSE), and POI
should be used.

Our results show that our models can identify patients to be more closely monitored
using systems, such as the septic shock early warning system, which rely on invasive
measurements. However, there are open questions relating to the practicality and fea-
sibility of our models. Where is the appropriate trade-off between precision and recall?
What are acceptable detection rates in actual practice? Thus, one could design a study
to determine the applicability of our models. However, any external evaluation of our
models is beyond the current scope of this work.

Our current models use summary statistics to capture variability in a patient’s
physiological state. There is additional information embedded in the temporal pat-
terns found in a patient’s clinical measurements [Batal et al. 2012; Wang et al. 2012].
Furthermore, assigning a random evaluation time during the first SIRS interval for
control patients is not practical from an application perspective. As future work, we
can incorporate time-series models into our framework to improve the prediction of
septic shock.
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5. CONCLUSION

We presented a novel approach to accurately predict septic shock from noisy and/or in-
termittently gathered clinical data. The features we chose minimize the use of labora-
tory tests and invasive features. We also proposed alternate criteria for the imputation
selection process by optimizing the predictive performance objective.

Our results show the importance of training classifier models on imputed data.
Although the performance of our models does not outperform previous works, they
can more readily handle predictions for patients with partially missing observations,
a common scenario in most “real world” clinical settings. The results also show that
alternate selection criteria of £ can improve predictive performance. Missing data im-
putation allows us to apply the models to larger, noisier, and more incomplete datasets
encountered in modern clinical studies.

Our septic shock prediction models can provide healthcare providers with patients
in need of closer monitoring, decreasing the medical response time to an adverse event
and improving their outcomes. Future work will focus on incorporating time-series
models into the current framework to further help septic shock prediction.
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