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ABSTRACT

The rapidly increasing availability of electronic health records
(EHRs) from multiple heterogeneous sources has spearheaded
the adoption of data-driven approaches for improved clini-
cal research, decision making, prognosis, and patient man-
agement. Unfortunately, EHR data do not always directly
and reliably map to phenotypes, or medical concepts, that
clinical researchers need or use. Existing phenotyping ap-
proaches typically require labor intensive supervision from
medical experts.

We propose Marble, a novel sparse non-negative tensor
factorization method to derive phenotype candidates with
virtually no human supervision. Marble decomposes the
observed tensor into two terms, a bias tensor and an in-
teraction tensor. The bias tensor represents the baseline
characteristics common amongst the overall population and
the interaction tensor defines the phenotypes. We demon-
strate the capability of our proposed model on both sim-
ulated and patient data from a publicly available clinical
database. Our results show that Marble derived phenotypes
provide at least a 42.8% reduction in the number of non-
zero element and also retains predictive power for classifica-
tion purposes. Furthermore, the resulting phenotypes and
baseline characteristics from real EHR data are consistent
with known characteristics of the patient population. Thus
it can potentially be used to rapidly characterize, predict,
and manage a large number of diseases, thereby promising a
novel, data-driven solution that can benefit very large seg-
ments of the population.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining

Keywords

Tensor; Dimensionality reduction; EHR phenotyping; Ap-
plication

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’14, August 24–27, 2014, New York, NY, USA.

Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.

http://dx.doi.org/10.1145/2623330.2623658 .

1. INTRODUCTION
Electronic health records (EHRs) are becoming an in-

creasingly important source of detailed patient information.
Effective integration and efficient analysis of EHRs can aid in
solving many of the healthcare problems: making informed
clinical decisions, improving patient safety, and facilitating
investigations and knowledge discovery. However, several
formidable challenges arise from the application of EHR
data to clinical research, including diverse populations, het-
erogeneous and noisy information, and interpretability con-
straints. Medical professionals are accustomed to reasoning
based on concise and meaningful medical concepts, or phe-
notypes. EHR-based phenotyping is a process to map raw
EHR data into meaningful medical concepts, learning med-
ically relevant characteristics of the data [15], and is impor-
tant for supporting genome-wide association studies [10]. An
example is the severe early childhood obesity phenotype1,
which identifies children with increased risk of adult obesity
and a potential lifetime of complications.

State of the art phenotype development, such as the eMerge
Network2, relies primarily on approaches that are heuristic,
rule, and iterative based, and is a collaborative team effort
between clinicians and IT experts [15, 22]. Recent work
has focused on high-throughput phenotyping, efficient and
automated phenotype extractions to reduce manual devel-
opment. Although data mining tools have been utilized to
automate the phenotype process, current high-throughput
methodologies cannot generate large amounts of candidate
phenotypes and achieve good performance without human
annotated samples [5]. Therefore, a major limitation of ex-
isting phenotype efforts is the need for human annotation
of case and control samples, which require substantial time,
effort, and expert knowledge to develop.

The “ideal” phenotype (i) represents complex interactions
between several sources, (ii) is concise and easily understood
by a medical professional, and (iii) maps to domain knowl-
edge. Thus, phenotyping can be viewed as a form of dimen-
sionality reduction, where each phenotype forms a latent
space [15]. Matrix factorization, a common dimensional-
ity reduction approach, is insufficient as it cannot concisely
capture structured EHR source interactions, such as multi-
ple medications prescribed to treat a single disease. A more
natural transformation is tensor factorization, which utilizes

1The phenotype definition can be found in Phenotype
KnowledgeBase.
2The eMerge network explores the use of EHR to obtain
phenotypic information at multiple medical institutions.
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Figure 1: Example of a Marble-derived phenotype from
CMS data.

the multiway structure to produce concise and potentially
more interpretable results. We conducted a pilot study to
evaluate tensor-derived phenotypes using EHR data from
the Geisinger Health System [14]. A medical expert evalu-
ated 50 tensor-derived phenotypes and found that 82% gen-
erally mapped to a medical concept. However, the domain
expert’s comments primarily revolved around the lack of
conciseness and the presence of “unnecessary”diagnoses and
medications. Therefore, a sparse non-negative tensor factor-
ization of count data is desired to simultaneously generate
multiple concise phenotypes. An efficient and automated
high-throughput phenotyping process can help identify ex-
isting, as well as novel, medical concepts from large-scale
EHR data, and increase our ability to create personalized
applications to improve the health and well-being of the gen-
eral population.

This paper presents Marble, a novel sparse non-negative
tensor factorization model to fit count data. Analogous to
the geology domain, where marble rock is used to produce
monuments, buildings, and sculptures, our algorithm can
serve as the basis of automated high-throughput phenotyp-
ing tools. Our model extends the non-negative CANDE-
COMP/PARAFAC (CP) Poisson tensor decomposition [6]
from two aspects: (i) constraints on the factor matrices to
minimize the number of non-zero elements, and (ii) aug-
mentation of the tensor approximation. Marble decomposes
an observed tensor into two terms, a bias (or offset) ten-
sor and an interaction (or signal) tensor. The bias tensor
represents the baseline characteristics common amongst the
overall population and also provides computational stabil-
ity. The interaction term is compromised of concise, intu-
itive, and interpretable phenotypes in the data, illustrated in
Figure 1. This paper details the tensor factorization model
and presents the algorithm to solve the problem formula-
tion using both an alternating minimization and sequential
unconstrained minimization approach. We corroborate our
model on simulation data as well as real EHR data. Our
results demonstrate that Marble achieves at least a 42.8%
reduction in the number of non-zero elements compared to
CP-APR without sacrificing the quality of the tensor de-
composition. Furthermore, the phenotypes and the baseline
characteristics derived from the real EHR data are consis-
tent with existing studies on the population.

The remainder of the paper is structured as follows. Sec-
tion 2 presents preliminaries of matrix and tensor factoriza-
tion and related work. Next, we detail our model in Section
3. Section 4 demonstrates and evaluates our model on sim-

Table 1: List of notations used in this paper

Symbol Definition

α, γ scalar
λ,u,a vector

A,B,Z,Λ,Π,Φ,Ψ matrix
X ,M,C,V tensor

i⃗ tensor element index (i1, i2, · · · , iN )
x⃗i tensor element at index i⃗

X(n),M(n),C(n) mode-n matricization of tensor
∗ element-wise multiplication
⊘ element-wise division
◦ outer product
⊙ Khatri-Rao product

< x,y > inner product of x,y

ulation data and real EHR data. Finally, we summarize our
work in Section 5.

2. PRELIMINARIES AND RELATED WORK
This section describes the preliminaries of matrix and ten-

sor decomposition and related tensor factorization work. Ta-
ble 1 provides a key for the symbols used in the paper. For
indexing of matrix A, we denote the (i, j)th element as aij ,
the jth column as a:j , and the ith column as ai:.

Matrix decomposition. Matrix factorization (MF) is
a common dimensionality reduction approach, which rep-
resents the original data using a lower dimensional latent
space. Standard MF approaches find two lower dimensional
matrices that when multiplied together approximately pro-
duce the original matrix, X ≈WH. Although many matrix
decomposition techniques exist, singular value decomposi-
tion and nonnegative matrix factorization (NMF) are two
common algorithms used to reduce the feature dimension.

Notation Details. Definitions for algebraic operations used
in the paper are provided below.

Definition 1. The outer product of N vectors, a(1) ◦ a(2) ◦
· · ·◦a(N), produces a N th order tensor X where each element
x⃗i = xi1,i2,··· ,iN = a(1)

i1
a(2)
i2

· · · a(N)
iN

.

Definition 2. The element-wise multiplication (and divi-
sion) of two same-sized matrices A ∗B (A⊘B) produces a
matrix Z of the same size such that the element c⃗i = a⃗ib⃗i
(c⃗i = a⃗i/b⃗i) for all i⃗.

Definition 3. The Khatri-Rao product of two matrices A⊙
B of sizes IA×R and IB×R respectively, produces a matrix
Z of size IAIB×R such that Z =

[

a1 ⊗ b1 · · · aR ⊗ bR

]

,
where ⊗ represents the Kronecker product. The Kronecker

product of two vectors a⊗ b =

⎡

⎢

⎢

⎢

⎣

a1b
a2b
...

aIAb

⎤

⎥

⎥

⎥

⎦

.

Tensor Decomposition. A tensor is a generalization of
matrices to higher dimensions. Thus, tensor factorization
(decomposition) is a natural extension of matrix factoriza-
tion and utilizes information from the multiway structure
that is lost when modes are collapsed to use matrix factoriza-
tion algorithms [21, 23]. The CANDECOMP / PARAFAC
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(CP) [3, 13] model is a common tensor decomposition and
can be viewed as a higher-order generalization of singular
value decomposition [17]. The CP model approximates the
original tensor X as a sum of R rank-one tensors and can
be expressed as

X ≈
R
∑

r=1

λra
(1)
r ◦ . . . ◦ a

(N)
r

= !λ;A(1); . . . ;A(N)".

Note that !λ;A(1); . . . ;A(N)" is shorthand notation to de-
scribe the CP decomposition, where λ is a vector of the
weights λr and a

(n)
r is the rth column of A(n). The CP ten-

sor decomposition has been used for concept discovery [16],
network analysis of fMRI data [9], and community discovery
[20]. The details of computing the CP decomposition and
other tensor decomposition models can be found in [17].

Some domain applications may desire non-negative com-
ponents, a higher-order generalization of NMF. Non-negative
tensor factorization (NTF) requires the elements of the fac-
tor matrices and the weights to be non-negative. A broad
survey of practical and useful NMF and NTF algorithms
can be found in [8]. Our paper will focus on the nonnega-
tive CP alternating Poisson regression (CP-APR) model to
fit sparse count data [6]. Details of the algorithm and model
are presented in the paper by Chi and Kolda [6].

NTF and NMF algorithms generally produce sparse rep-
resentations. However, additional sparsity may be desired
for the factor matrices. Traditional sparsity-inducing penal-
ties such as ℓ1 and ℓ2 regularization [23] only deal with
the standard least-squares minimization. Non-parametric
Bayesian approaches to sparse Tucker decomposition have
been recently proposed [24]. Nonetheless, there is a paucity
of existing work regarding sparse factor representations us-
ing KL divergence as an objective function. A multi-layer
NTF has been proposed to achieve sparse representations for
various cost functions including KL divergence using a non-
linearly transformed gradient descent approach [7]. Yet, the
approach is computationally expensive because multiple ten-
sor factorization stages are required and sparsity constraints
are achieved via an exponential update (i.e. s ← s1+γ , for
small γ). Sparse factor representation using KL divergence
is difficult because (1) an incorrect zero in the factor rep-
resentation causes the objective function to be ill-defined
as limi→0 log i = −∞, and (2) data centering, a technique
commonly used to remove the bias in continuous data prior
to matrix/tensor factorization, is not feasible as the objec-
tive function (KL divergence) is defined on the non-negative
orthant. Both challenges will be addressed in Section 3.3.

3. MARBLE
Marble is a sparse non-negative tensor factorization for

count data. Marble decomposes an observed tensor into two
terms, a bias (or offset) tensor and an interaction (or signal)
tensor. The bias tensor represents the baseline characteris-
tics common amongst the overall population and also pro-
vides computational stability. The interaction term is com-
promised of the R most prevalent phenotypes in the data
(or medical concepts that are observed). Our model im-
poses sparsity constraints by reducing the “probabilistically
unlikely” mode elements. Figure 2 illustrates the factoriza-
tion of the patient by diagnosis by procedure tensor into R

Figure 2: Deriving candidate phenotypes using Marble.

phenotypes and the bias vectors. We will first formulate the
problem and provide a general overview of the algorithm.
Next, we introduce the sparse factor representation and the
augmented bias tensor. Then, we present the algorithm to
solve the problem formulation. Finally, we illustrate how
Marble can be used to perform high-throughput phenotyp-
ing in EHR data.

3.1 Problem Formulation and Overview
Let X denote an observed tensor constructed from count

data with size I1 × I2 × · · ·× IN and M represent a same-
sized tensor of Poisson parameters for X . M is split into
two terms, a rank one bias tensor C and a rank R interaction
tensor V. The bias term, or baseline characteristics of the
population, is composed of N positive vectors u(1), · · · ,u(N)

and a positive scalar α. The interaction term is similar to
the Poisson decomposition tensor, where each rank one ten-
sor is comprised of N stochastic vectors (elements sum to 1
and non-negative) with a non-negative weight λr. However,
Marble constrains the feasible space of the vectors to either
be zero or above some threshold value γn. The optimization
problem is defined as

min f(M) ≡
∑

i⃗

(mi⃗ − xi logmi⃗) (1)

s.t M = C + V

C = !α;u(1); · · · ;u(N)" ∈ ΩC (2)

V = !λ;A(1); · · · ;A(N)" ∈ ΩV

ΩC = Ωα × Ωu1 × · · ·× ΩuN

Ωα = (0,+∞) (3)

Ωun = {u ∈ (0, 1]In×1 | ||u||1 = 1} (4)

ΩV = Ωλ × ΩA1 × · · ·× ΩAN

Ωλ = [0,+∞)R

ΩAn = {A ∈ {0, [γn, 1]}
In×R | ||a:r||1 = 1 ∀r}. (5)

We solve the problem using an alternating minimization
approach, cycling through each mode while fixing all other
modes. For each mode, the algorithm first calculates the
factor matrix associated with the interaction tensor. The
matrix is then gradually projected onto the feasible space,
described in Section 3.2, using a penalty method approach
detailed in Section 3.4.2. Once the interaction factor matrix
is computed, the bias vector is computed. After an iteration
(where the algorithm has cycled through all the modes),
the projection penalty is updated and the whole process is
repeated until convergence occurs. A high-level view of the
Marble algorithm is illustrated in Algorithm 1, with details
described in Section 3.4.
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Algorithm 1: Overview of Marble algorithm

while not converged do
foreach mode n do

Solve the nth interaction factor matrix (Section
3.2);
Project onto sparse factors (Section 3.4.2);
Solve nth bias vector (Section 3.3);

end
Calculate gradual projection penalty (Section 3.4.2);

end

3.2 Sparse Factor Representation
Sparse factor representations are desired to improve inter-

pretability and address the problem where the CP-APR ten-
sor factorization model produced“probabilistically unlikely”
diagnoses and medications. The CP-APR model imposes a
stochastic constraint on the columns of the factor matrices.
For the rth rank one tensor, each non-zero element along the
nth vector a(n)

r represents a probabilistic estimate of the el-
ement’s membership (e.g. probability the diagnosis diabetes
belongs to this phenotype). Therefore, our model removes
small non-zero elements to achieve sparse factor matrices,
while also guaranteeing convergence to a local minimum.
Marble modifies the stochastic constraints of CP-APR such
that each nth factor matrix, A(n), will have non-zero com-
ponents that range from γn to 1 and the elements of each
column sum to 1. Equation (5) captures the sparse factor
representation constraint. Each mode can have a different
threshold, γn, as the desired level of sparsity may depend
both on domain constraints and the mode size.

3.3 Bias Tensor
Marble introduces a rank one bias tensor to capture base-

line characteristics common amongst the overall population.
Traditional tensor (or matrix) factorization approaches, which
use a least squares loss, center the data by subtracting the
feature mean from all the observations. Thus, the decom-
position is only performed on the “signal” (or “interaction”)
aspects of the data. Unfortunately, the data centering tech-
nique is not feasible for Marble as the KL divergence is only
defined for non-negative x⃗i.

The bias tensor also provides computational stability for
the “inadmissible zeros” resulting from the sparse factor rep-
resentation. Under the assumption that γn in Equation (5)
is set to be non-zero, the sparse factor representation will
produce a limited number of non-zero elements. Given that
R is not over-specified, the probability an element mi⃗ is zero
is high. If the corresponding observed tensor element is zero
(x⃗i = 0), then mi⃗ − xi logmi⃗ = 0. However, for a non-zero
x⃗i, the objective function is ill-defined as limi→0 log i = −∞,
leading to an “inadmissible zero”. Several works have dealt
with this problem by either avoiding zeros [11], altering the
updates [19], or shifting elements into the interior [6]. How-
ever, all these methods adversely effect the sparsity of the
resulting factors.

We augment the Poisson tensor decomposition with an ad-
ditional rank-one tensor, shown in Equation (2). The scalar
constant α and the factor vectors u(1),u(2), · · · ,u(N) must
be strictly positive, which are captured in Equations (3) and
(4). Although similar in nature to an additional clinical

phenotype, the bias tensor is not equivalent to increasing
the rank of the original decomposition V to R + 1. Each
factor vector (u(1) where n > 1) represents the common
baseline characteristics amongst the entire population (e.g.,
the overall likelihood of developing diabetes, getting a chest
x-ray, etc) and captures the data bias, or offset, of the ob-
served tensor. Furthermore, the positive augmented tensor
stabilizes the optimization problem by avoiding inadmissible
zeros in M and allows sparse factor matrices in the inter-
action tensor, A(n).

3.4 Algorithm

3.4.1 Alternating Minimization Updates
The optimization problem presented in Section 3.1 is solved

via an alternating minimization approach, where all factor
vectors/matrices are fixed except for the one being updated.
For each mode, we compute the subproblem solution using
an approach similar to CP-APR [6]. For the nth mode, we
express the mode-n matricization V(n) = B(n)Π(n), where

B
(n) = A

(n)
Λ, where Λ = diag(λ) (6)

Π
(n) =

(

A
(N) ⊙ · · ·⊙A

(n+1) ⊙A
(n−1) ⊙ · · ·⊙A

(1)
)

ᵀ

.

(7)

The weights (λ) are absorbed into the nth factor matrix
B(n) in Equation (6) and we use the matrix Π(n) to de-
note the fixed parts in Equation (7). Note that the size
of matrix B(n) is In × R while the size of matrix Π(n) is
R ×

∏N
j=1,j≠n Ij . Using the notation above, we can rewrite

the objective function, Equation (1) as follows:

e
ᵀ

[

C(n) +B
(n)

Π
(n) −X(n) ∗ log

(

C(n) +B
(n)

Π
(n)

)]

e,

where e is a vector of all ones, C(n) is the mode-n matriciza-
tion of the bias tensor and X(n) is the mode-n matricization
of the observed tensor.

The multiplicative update derivation for the weighted fac-
tor matrix B(n) can be computed by taking the partial
derivative of the objective function respect to a single el-
ement bgh.

∂f
∂bgh

=
∑

ℓ

πhℓ −
∑

ℓ

xgℓ
πhℓ

cgℓ +
∑

r bgrπrℓ
.

Setting the gradient descent step size set to
bgh∑
ℓ πhℓ

yields

the multiplicative update:

bgh = bgh

[

∑

ℓ

xgℓ
πhℓ

cgℓ +
∑

r bgrπrℓ

]

.

The non-negative factor matrix constraints are satisfied us-
ing the multiplicative update. Generalizing for the entire
factor matrix, the update equation is as follows:

B
(n) = B

(n) ∗
[

X⊘ (C(n) +B
(n)

Π
(n))

]

Π
(n)ᵀ. (8)

We adopt the same alternating update strategy for the
bias tensor C. In particular, we update the mode n bias
vector u(n) holding other modes constant, with the fixed
parts denoted as Ψ(n).

C(n) = αu(n)
Ψ

(n)

Ψ
(n) =

(

u
(N) ⊙ · · ·⊙ u

(n+1) ⊙ u
(n−1) ⊙ · · ·⊙ u

(1)
)

ᵀ

(9)
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The update for the augmented bias vector follows a similar
derivation as B(n).

u
(n) = u

(n) ∗
[

X(n) ⊘ (αu(n)
Ψ

(n) +V(n))
]

Ψ
(n)ᵀ. (10)

3.4.2 Gradual Projection
The alternating minimization updates satisfy the non-

negative constraints of the weights (λ), factor matrices A(n),
and basis vectors u(n). However, the factor matrices will
not satisfy the modified stochastic constraints in Equation
(5). The projected gradient descent method can be used
to threshold the factor matrices after each alternating min-
imization update. Experimental results (shown in Section
4) show that zeroing out components too early in the it-
erative process negatively impacts the quality of the factor
representation. Instead, Marble uses a penalty method ap-
proach [2] to gradually adjust the projection threshold at
each iteration. During the early iterations, when the factor
representations are changing drastically, the “feasible set”
is closer to the [0, 1] range. As the factor representations
start to stabilize (difference in objective function starts to
approach zero), the projection occurs on the feasible set de-
scribed in Equation (5). A new scalar ξ is introduced to
calculate the gradual projection, where each iteration uses
the threshold ξγn. The range of ξ is [0,1], where zero rep-
resents no projection and 1 represents the full projection.
After each iteration k where all the modes have been cycled
through, we update ξ as follows:

κ(k) = 1−
|f(M(k−1))− f(M(k))|

|f(M(k−1))|

ξ(k+1) = max(ξ(k),
1
2
ξ(k) +

1
2
κ(k)). (11)

Marble uses a moving average of the ξ to minimize drastic
changes and also ensures that the penalty is non-decreasing
at each iteration.

3.4.3 Algorithm Details
Subproblem Convergence. Marble performs several

subproblem iterations (user-defined maximum L) at each
mode n for both the factor matrix A(n) and the bias vector
u(n). Empirical evidence suggests extra inner iterations can
accelerate the convergence [6]. The benefit of subproblem
iterations on simulation data is presented in Section 4. The
exit criterion (Karush-Kuhn-Tucker (KKT) conditions) for
the subproblem iterates is similar to the CP-APR algorithm
[6]. For convenience, we introduce the following to matrices:

Φ
(n) =

[

X(n) ⊘ (αu(n)
Ψ

(n) +B
(n)

Π
(n))

]

Π
(n)ᵀ (12)

Z
(n) =

[

X(n) ⊘ (αu(n)
Ψ

(n) +B
(n)

Π
(n))

]

Ψ
(n)ᵀ, (13)

which capture the multiplicative terms in Equations (8) and
(10) respectively. These matrices are used to check conver-
gence of the subproblem, with the algorithm exiting under
the following conditions:

min(A(n),E−Φ
(n)) = 0

min(u(n),E− Z
(n)) = 0,

where E represents a matrix of all ones. Note that min is the
element-wise minimum of the two matrices, and the result
should be a matrix of all zeros. We relax the zero equality

Algorithm 2: Detailed Marble algorithm

Data: X , R,α,γ
Result: V ,C
for k = 1, 2, · · · ,K do

lastObj← 0
ξ ← 0
//For each mode n
for n = 1, · · · , N do

Ω̂n ← {0, [ξγn, 1]}
In×R

Set Ψ(n) using Equation (9)

Set B(n) using Equation (6)

Set Π(n) using Equation (7)
//Solve nth interaction factor matrix
for ℓ = 1, · · · , L do

Calculate Φ(n) using Equation (12)

if min(B(n),E−Φ(n)) ≤ kktTol then break

B(n) ← B(n)∗ Φ(n)

end
//Project onto sparse factors

B(n) ← PΩ̂n
(B(n))

λ← eᵀB(n)

A(n) ← B(n)Λ−1

//Solve nth bias vector
for ℓ = 1, · · · , L do

Calculate Z(n) using Equation (13)

if min
(

u(n),E− Z(n)
)

≤ kktTol then break

u(n) ← u(n) ∗ Z(n)

end

u(n) ← u
(n)

||u(n)||1

end
obj← f(M)
if |obj− lastObj| < convergenceTol then break
//Calculate projection penalty
Update ξ using Equation (11)
lastObj← obj

end

for practical purposes and check for convergence within a
certain tolerance, e.g. min(u(n),E − Z(n)) ≤ kktTol. The
detailed Marble algorithm is presented in Algorithm 2.

Sparse Implementation. When X is a sparse tensor,
we construct V and C using the non-zero elements of the
observed tensor and avoid constructing V and C explicitly.
Our algorithm adopts the sparse tensor implementation ap-
proach presented in [1, 6]. The only calculations necessary
are the ones that correspond to the non-zero elements in X .
We can store X as a set of values and indices (vq , c), where
Q are the non-zero elements of the tensor. We then form Q
rows of Π and Z that correspond to each non-zero element
of X . The qth vector of Π and Z are:

w(q) = a
(1)

(⃗i
(q)
1 :)
∗ · · · ∗ a(n+1)

(⃗i
(q)
n+1:)

∗ a(n−1)

(⃗i
(q)
n−1:)

∗ · · · ∗ a(N)

(⃗i
(q)
N

:)

y(q) = u
(1)

(⃗i
(q)
1 :)
∗ · · · ∗ u(n+1)

(⃗i
(q)
n+1:)

∗ u(n−1)

(⃗i
(q)
n−1:)

∗ · · · ∗ u(N)

(⃗i
(q)
N

:)
,
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where a
(1)

(⃗i
(q)
1 :)

is the i⃗(q)1 row of A(1). Thus, we can calculate

element (i, r) of Π and Z as:

v(q) = x(q)/(< y
(q),αu(n)

(i
(q)
n :)

> + < w
(q),B(n)

(i
(q)
n :)

>)

Φjr =
∑

q:i
(q)
n =j

v(q)w(q)

zjr =
∑

q:i
(q)
n =j

v(q)y(q)

Note that we require storage for the augmented tensor, which
entails storing y(q). Thus, we require Q additional storage
compared to CP-APR.

Computational Complexity. Note that the subprob-
lem iterates in the CP-APR model is the computational
bottleneck of the algorithm. In particular, calculating Φ
requires on the order of the decomposition rank R times the
product of the dimension of each tensor mode In. If we de-
note the size of the largest mode as D, then CP-APR has the
computational complexity of O

(

DN
)

. Although our algo-
rithm has to compute the additional augmented vector, the
computational complexity remains the same as CP-APR.

3.5 Application to EHR-Phenotyping
While Marble is a general non-negative sparse tensor fac-

torization model to fit count data, we motivated the prob-
lem to simultaneously derive multiple EHR phenotypes with
minimal human intervention. We briefly describe the con-
struction of an EHR count tensor and the resulting candi-
date phenotypes using our algorithm. Figure 3 provides a
conceptual illustration of the high-throughput phenotyping
process. Each patient is anchored using an index date (i.e.
hospital admit date) and the observation window can be de-
fined as a fixed time window either before or after the index
date depending on the application. Any data that occurs
during the observation window is used during the construc-
tion process. The EHR tensor is then constructed using the
count of the co-occurrences between the various modes. In
Figure 2, each tensor element represents the number of times
either a normal or abnormal clinical measurement occurred.

Once the tensor is constructed, we can use Marble to fit
a non-negative Poisson tensor decomposition to the data.
The resultant tensor V is then used to define R candidate
phenotypes, similar to Figure 1. Thus, the rth candidate
phenotype is defined using the non-zero elements of the rth
column from all N factor matrices.

New patients can be projected onto the tensor-derived
phenotypes to obtain a phenotype membership vector. We
define the phenotype membership vector as the convex com-
bination of the tensor-derived phenotypes, where the rth
element denotes the probability the patient exhibits charac-
teristics consist with the rth phenotype. For notation pur-
pose, we will assume the patient mode is the first mode of
the tensor. Thus given a new patient’s tensor X̂ , we want
to find λ̂ and â(1) that provides that best approximates the
new patient’s tensor. Our projection also needs to deter-
mine α̂, the strength of the bias in X̂ . We observe that this
is equivalent to the optimization subproblem for the first
mode with several noticeable differences: (1) the phenotype
membership vector is obtained by normalizing the entries of
b̂(1) across all R phenotypes instead of the standard column
normalization for each phenotype, (2) setting the augmented

Figure 3: A high-level depiction of using Marble to generate
high-throughput phenotypes.

vector (û(1)) to 1 and absorbing the weight into α̂, and (3)
ignoring the projection onto the feasible set defined in the
optimization problem.

4. EXPERIMENTS
In this section, we will first evaluate the algorithmic per-

formance using a simulated dataset where the actual tensor
factors are known. Then, we evaluate the phenotyping per-
formance using a realistic EHR dataset.

Evaluation Metric Details. Definitions for the evaluation
metrics are provided below.

Non-zero Ratio =
# Non-zeros in Computed Solution
# Non-zeros in Actual Solution

Similarity(a,b) =
aᵀb

||a||||b||

Similarity is calculated using the cosine similarity, a compo-
nent of the factor match score (FMS), to quantify the simi-
larity between the computed solution and the actual factor
representation. FMS is commonly used to quantify the close-
ness of the computed solution and provides a single number
between [0, 1] [6]. However, FMS is an aggregate measure
and can mask the mode-specific similarity results. For our
analysis, we pair the computed rank-one tensors with the
true rank-one tensors using a greedy algorithm, providing a
lower bound on the similarity scores.

4.1 Simulation
First, we analyze simulated data where the underlying

factor representation is known. Specifically, we consider a
third-order tensor of size 100 × 80 × 60 with rank of 10
(R = 10). We generate the model M = C + V , where
C = !α;u(1); · · · ;u(N)" and V = !λ;A(1); · · · ;A(N)". Each
factor matrix A(n) is generated as follows: (1) Sample the
non-zero element indices for each column according to the
sparsity pattern for the mode; (2) From the sampled indices,
randomly select 10% of the entries (or minimum of one) to
sample uniformly from the interval [0, 10] to mirror real EHR
characteristics (e.g. one or two diagnosis contribute heav-
ily to a phenotype); (3) For the remaining indices, sample
uniformly from [0, 1]; and (4) Normalize the column so the
elements sum to 1, and absorb the weight into λ. Each
augmented vector is chosen in a similar fashion except the
weight is set to α = 2. The full tensor M is calculated from
the factor matrices and the augmented vectors. Then each
tensor element xijk is sampled from the Poisson distribution
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Figure 4: Simulation results on a third-order tensor

with the parameter set to mijk. Ten observation tensors are
generated from the tensor M.

4.1.1 Inner iteration benefits
The number of maximum subproblem iterations (L) rep-

resents the “closeness” to the subproblem solution. Thus,
a single subproblem iteration (equivalent to the Lee-Seung
multiplicative update [18]) only takes a step towards the sub-
problem solution as observed by [6]. For the simulated data,
the average computation time (in seconds) for 1, 5, and 10
subproblem iterations was 37.6, 89.4, and 92.56 respectively.
Additional inner iterations do not accelerate convergence, as
the computational time increase with the number of itera-
tions. However, Figure 4a illustrates the benefit of extra
subproblem iterations on the similarity scores from the true
solution. The similarity score at 10 inner iterations is the
highest across all the modes. Therefore, more subproblem
iterations improves the quality of the resulting tensor de-
composition.

4.1.2 Gradual projection benefits
Empirical evidence for the gradual projection approach is

presented in Figure 4b. We compare the gradual projection
described in Section 3.4.2 to (i) no projection where ξ = 0 for
all iterations, and (ii) full projection where ξ = 1 for all iter-
ations. No projection yields the best similarity score across
all three modes. However, the gradual projection approach
results in tensor factors that are near the ideal non-zero ra-
tio of 1. It also has higher similarity scores on two of the
modes compared to full projection. Even though the ob-
servation matrix was generated from sparse factor represen-
tations with a relatively small bias effect (α = 2), without
any projection yields factor representations that on aver-
age contain at least 2× more non-zero elements in each col-
umn. The results demonstrate that the gradual projection
approach can reproduce the same sparsity ratio (number of
non-zero elements / size of mode) as the true solution but
sacrifices in terms of similarity to the true solution.

4.1.3 CP-APR comparison
Next, we perform a comparison with the CP-APR model.

The multi-layer sparse NTF model [7] is omitted due to
the added computational complexity of their model. Us-
ing a sparser underlying factor representation further high-
lights the differences between Marble and CP-APR. Marble

is slower than CP-APR, primarily due to the computation
of the augmented tensor decomposition. On the simulated
data, Marble takes about 58 seconds to converge to a local
optimal, while CP-APR obtains a solution in 45 seconds.
However, in comparison to current phenotyping approaches,
the 15 second difference is negligible given that a single dis-
ease phenotype can take months to develop.

Figure 4c displays a plot of the two algorithms based on
the non-zero ratio used in Figure 4b. Marble’s sparse factor
representation results in a higher similarity score for the
first and second mode. All the Marble modes are close to
the ideal non-zero ratio of 1. Furthermore, Marble achieves
a 42.8%, 55.1%, and 68.4% reduction on the non-zero ratio.
Thus, the non-zero pattern across all three modes is better
captured by our model, whereas CP-APR results in a higher
number of non-zero elements.

4.2 CMS Claim Records
The Centers for Medicare and Medicaid Services (CMS)

provides the CMS Linkable 2008-2010 Medicare Data En-
trepreneurs’ Synthetic Public Use File (DE-SynPUF), a pub-
licly available dataset that spans 3 years and contains inpa-
tient, outpatient, carrier, and prescription drug event claims
in addition to the beneficiary summary files3. The claims
records have been synthesized from 5% of the 2008 Medicare
population to protect the privacy of the beneficiaries. Al-
though the relationships between some of the variables have
been altered to minimize re-identification risk, the sheer vol-
ume of patients can still provide interesting and insightful
phenotypes.

Our experiments focus on a random subset of 10,000 pa-
tients from Sample 1 (CMS released the data in 20 sep-
arate samples). We construct the tensor from the carrier
claims records using the diagnosis and procedure codes. In-
dividual International Classification of Diseases (ICD-9) di-
agnosis codes and Healthcare Common Procedure Coding
System (HCPCS) procedure codes capture information at
a fine-grained level. Thus, similar diagnosis codes (proce-
dure codes) were grouped using the Unified Medical Lan-
guage System4 to aggregate the individual ICD-9 codes and
HCPCS codes to higher level medical hierarchies. Therefore,

3A detailed description can be found on their website.
4The Metathesaurus contains the source vocabularies for
150 sources, including ICD-9-CM and HCPCS.
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Figure 5: The distribution of factor elements along the three
CMS tensor modes. Zeros entries are omitted from the plot.

the constructed tensor is 10,000 patients by 129 diagnoses
by 115 procedures.

4.2.1 Threshold selection
The Marble algorithm computes the sparse factor repre-

sentation using predefined thresholds γn. These thresholds
provide a tunable knob to adjust the sparsity of the candi-
date phenotypes. Domain constraints can be used to deter-
mine the threshold value (e.g. a phenotype should only con-
tain a maximum of 3 unique diagnoses). However, given the
absence of domain knowledge, the Marble algorithm can be
used with γn = 0 for all n. A plot of the non-zero elements
distribution along each mode can be used to determine the
thresholds. Figure 5 shows the mean histogram of the CP-
APR non-zero factor values along the three modes using
R = 50 using the 10 subsamples. For all three plots, there
is a noticeable difference in size (the y-axis uses a log scale)
between the first two bins, which suggests the threshold oc-
cur at the start of the second bin. Thus, for the remainder
of the paper, the thresholds used are γ = [0.0001, 0.01, 0.01].

4.2.2 Predictive performance
The phenotypes are evaluated on a classification task of

predicting high cost (above 75th percentile) beneficiaries.
Our algorithm is compared against (i) CP-APR derived phe-
notypes and (ii) the raw feature matrix with 129 × 115
columns, where each column represents a diagnosis-procedure
combination. 10 random subsamples are obtained via strat-
ified sampling with a 50-50 train test split, and the phe-
notypes are derived from the training dataset only. An ℓ1
regularized logistic regression model is trained separately on
each of the three feature sets (the phenotype membership
matrix is the feature matrix for both Marble and CP-APR)
and the predictive performance is evaluated on the test set.

Figure 6 displays a plot of the area under the receiver
operating characteristic curve (AUC) as a function of the
number of phenotypes (R). The predictive performance of
both tensor factorization models using 50 phenotypes is sim-
ilar to baseline, providing a 300× feature reduction from the
original raw feature matrix. Beyond 50 phenotypes, the ac-
curacy gradually increases with the number of phenotypes.
Marble takes approximately 3.5 hours5 to factor the data
using 50 phenotypes. For the remainder of this paper, we
use R = 50 to provide detailed analysis of the individual
phenotypes.

Marble and CP-APR perform similarly in terms of pre-
dictive power. Table 2 illustrates a comparison between the

5A computer with an Intel R⃝ Xeon R⃝ Processor X5660 and
8 GB RAM.
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Figure 6: Area under the receiver operating characteristic
curve for the three feature sets as a function of the number
of phenotypes. The error bars display the 95% confidence
interval.

first, or highest λr, Marble-derived phenotype and a “sim-
ilar” CP-APR derived phenotype, where FMS is used to
quantify overall closeness of the phenotypes. The CP-APR
phenotype contains 10× more diagnosis and procedure ele-
ments because there is no sparsity constraint on the factor-
ization. In contrast, a medical professional can easily digest
the contents of the phenotype resulting from the Marble al-
gorithm. Marble yields concise phenotypes without losing
predictive power.

4.2.3 Data Bias
An added benefit of Marble is that it captures the baseline

characteristics that exist in the overall population via the
rank-one bias tensor. Table 3 shows the 10 highest valued
elements from the diagnosis and procedure mode, in decreas-
ing magnitude. The diagnosis bias vector shows that Medi-
care patients generally visit clinics because of various symp-
toms and complications. Furthermore, the diagnosis vec-
tor contains several chronic diseases common in the elderly
population, such as hypertension, arthritis (arthropathies),
heart disease, and diabetes (disease of other endocrine glands).
Centers for Disease Control and Prevention (CDC) estimate
that 80% of older adults suffer from at least one chronic
condition and 50% have two or more chronic conditions [4].
The procedure basis vector also contains procedure codes
relevant to the treatment of patients with chronic condi-
tions. We verified the results in Table 3 with chronic disease
reports provided by CDC6.

4.2.4 Chronic disease performance
The United States spends more than 2.1 trillion dollars

(75% of medical care) on the treatment of chronic diseases
[4]. Thus, obtaining phenotypes related to chronic disease
such as heart failure, diabetes, and cancer can help medical
professionals tailor treatment options based on the patient’s
phenotypes. The CMS dataset provides chronic disease in-
dicators7 that we will use to identify phenotypes associated
with specific chronic diseases.

Table 4 illustrates two of the heart-failure related pheno-
types, which maps to varying degrees of disease severity. Pa-

6The latest disease reports are located at http://www.cdc.
gov/chronicdisease/resources/publications/aag.htm
7A patient’s chronic condition flag cannot be perfectly re-
produced due to the synthetic claim process used.
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Table 2: Comparison of two tensor-derived phenotypes (blue and red text correspond to non-zero elements in the diagnosis
and procedure factors, respectively)

Marble Phenotype

Other metabolic and immunity disorders
Hypertensive disease

Complications of surgical and medical care
Chemistry Pathology and Laboratory Tests
Organ or Disease Oriented Panels
Hematology and Coagulation Procedures
Surgical Procedures on the Cardiovascular System

CP-APR Phenotype

Diseases of the blood and blood-forming organs
Nonspecific abnormal findings
Other diseases of digestive system
· · · 24 total diagnoses

Chemistry Pathology and Laboratory Tests
Hematology and Coagulation Procedures
Organ or Disease Oriented Panels
Surgical Procedures on the Cardiovascular System
· · · 63 total procedures

Table 3: Top 10 elements for the augmented bias tensor

Diagnosis Mode

Symptoms
Complications of surgical and medical care
Arthropathies and related disorders
Other forms of heart disease
Dorsopathies
Disorders of the human eye
Diseases of other endocrine glands
Hypertensive disease
Other metabolic and immunity disorder
Other diseases of urinary system

Procedure Mode

Evaluation and Management of Other Outpatient Services
Diagnostic Radiology Procedures
Hospital Inpatient Services
Chemistry Pathology and Laboratory Tests
Physical Medicine and Rehabilitation Procedures
Surgical Procedures on the Cardiovascular System
Cardiovascular Procedures
Emergency Department Services
Nursing Facility Services
Hematology and Coagulation Procedures

tients with the second phenotype (titled severe heart failure)
require hospital stays (inpatient services) and have added
complications from lung disease. Table 5 depicts two other
chronic disease phenotypes. The diabetes phenotype de-
scribes patients with complications resulting from diabetes,
as the procedures include organ or disease oriented panels.
The second phenotype, associated with arthritis, suggests
that patients belong to this phenotype are undergoing reha-
bilitation to strengthen their joints. Furthermore, all four
phenotypes shown are concise, easily interpretable, and map
to known characteristics of the chronic disease.

5. CONCLUSION
This paper presented Marble, a novel sparse non-negative

tensor factorization model to fit EHR count data. Our al-
gorithm offers a data-driven solution to simultaneously gen-
erate multiple phenotypes from a diverse EHR population
without expert supervision. The resulting phenotypes are
concise, intuitive, and interpretable; and automatically re-
veal patient clusters on specific diagnoses and procedures.
Furthermore, Marble captures the baseline characteristics
of the overall population via an augmented bias tensor.

The experimental results on simulated data and 10,000
patient records from the CMS De-SYNPUF dataset demon-
strate the conciseness, interpretability, and predictive power
of Marble-derived phenotypes. They underscore the promise
of Marble for high-throughput phenotyping with minimal
human intervention. Marble can potentially be used to rapidly
characterize, predict, and manage a large number of dis-
eases, thereby promising a novel, data-driven solution that
can benefit very large segments of the population. Future
work will focus on generalizing the sparse non-negative ten-
sor factorization to multi-relational tensors [20] to incorpo-

rate multiple EHR data sources and examine quasi-Newton
methods to improve computational speed of the algorithm
[12].
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