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ABSTRACT
Sepsis and septic shock are potentially fatal complications
that frequently occur in intensive care unit patients. The
ability to predict which patients are at risk for sepsis and
septic shock is therefore crucial to limiting the effects of
these complications. Potential indications for sepsis risk are
scattered in a wide range of clinical measurements, includ-
ing high-temporal resolution physiological waveforms, X-
rays and gene expression levels, etc., leading to a non-trivial
prediction problem. Thus previous works on sepsis predic-
tion have used very small, carefully curated datasets, with
limited applicability. Recently however, a large, rich ICU
dataset called MIMIC-II has been made publicly available,
providing opportunity for more extensive modeling of this
problem. However, such a large dataset inevitably comes
with a substantial higher amount of missing data. In this
paper, we investigate how different imputation methods can
overcome the handicap of missing information while leverag-
ing such a large dataset. Our results show that imputation
approaches in conjunction with predictive modeling lead to
a decent boost in accuracy of sepsis risk prediction and a
huge improvement in prediction of septic shock, even when
one is restricted to only using non-invasive measurements.
Our models can be applied to any ICU patient and lead to
a generalized approach for predicting sepsis related compli-
cations.
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1. INTRODUCTION
Sepsis is a systemic response to infection that is a common

and often life-threatening complication in intensive care unit
(ICU) patients [4]. Cases of severe sepsis often lead to septic
shock, a complication characterized by low blood pressure
despite treatment that dramatically increases mortality risk
[1]. Early intervention and therapy have been shown to im-
prove the outcome of patients with severe sepsis and septic
shock [8], thus making accurate identification of patients
at risk for developing these conditions crucial to improving
standards of clinical care.

However, the nature of clinical data complicates the devel-
opment of highly accurate predictive models. Clinical data
are typically noisy and inconsistently gathered. For exam-
ple, while physiological measures such as heart rate are elec-
tronically monitored, they are often manually recorded in a
patient’s chart by a healthcare provider, and such recordings
may be done at irregular intervals. Furthermore, accurate
measures for physiological variables like blood pressure re-
quire the use of invasive techniques that would place patients
at unnecessary risk and therefore cannot be ethically gath-
ered. In such cases, less accurate measurements obtained by
non-invasive means are the only available data.

Thus, clinical studies must often deal with large amounts
of missing data. A typical approach to addressing this prob-
lem is to simply ignore subjects or features that have miss-
ing data. However, doing so can cause dramatic decreases
in sample sizes or feature spaces, potentially hindering the
development of accurate models. In addition, data that is
not missing (completely) at random can introduce a bias in
the results. We also note that previous work on sepsis pre-
diction have largely been restricted to very modest, highly
curated datasets with small number of samples and limited
sets of features.

The issue of missing data is also encountered in the MIMIC
II database [10], which is one of the most extensive pub-
licly available data collected to date on ICU patients. To
fully exploit the potential of such available data, this pa-
per investigates the role and impact of imputation methods
while building predictive models for sepsis risk and septic
shock. We limit our features to commonly observed, mostly
non-invasive clinical measures, so that the results are easily
actionable on large numbers of patients. We demonstrate
that even with such restrictions, one can achieve accuracies
comparable to those models that rely on more invasively-
gathered measures and that are much more limited in scope.
Our approaches easily generalize to all ICU patients and al-
low for early diagnosis and intervention for septic patients.



2. BACKGROUND AND RELATED WORK

2.1 Clinical Definitions
Sepsis is a severe, systemic inflammatory response and is

diagnosed when a patient has an infection (or evidence of an
infection) that is associated with two or more of the follow-
ing critera: (1) abnormal body temperature, (2) increased
heart rate, (3) increased respiratory rate, or (4) abnormal
white blood cell counts [1]. Severe sepsis is defined as “sep-
sis associated with organ dysfunction, hypoperfusion, or hy-
potension” [1]. We do not distinguish between these two
conditions in this study and use the term “sepsis” to refer to
both sepsis and severe sepsis in the remainder of the paper.

Septic shock is diagnosed when a septic patient has a sys-
tolic blood pressure (SBP) <90 mmHg despite treatment by
>600 mL of fluid inputs in the last hour [1, 11].

2.2 MIMIC II Database
The Multiparameter Intelligent Monitoring in Intensive

Care II (MIMIC II) database is a publicly available resource
developed to support research in clinical decision support
and critical care medicine [10]. Version 2.6 of this database
provides data on >30,000 patients in the ICUs of Boston’s
Beth Israel Deaconess Medical Center between 2001 and
2007. The clinical records include charted physiological mea-
sures, medication records, fluid input and output records,
laboratory test results, procedure orders, and free-form text
notes produced for each of the >40,000 ICU stays recorded
in the database.

The database also provides high temporal-resolution phys-
iological waveform data gathered on ∼2, 000 patients using
bedside electronic monitoring units. However, this study
did not use any of these data due to ambiguities associating
some waveforms with specific subjects as well as the lack of
such data for the most of the patients in the database.

2.3 Sepsis and severe sepsis prediction
Several approaches for identifying patients at risk for de-

veloping sepsis have been proposed. Lukaszewski et. al [4]
used several clinical factors and the expression levels of seven
immune system related genes to train a multilayered percep-
tron and reported an 83% predictive accuracy for patients
who became septic. Tang et. al [13] applied PCA and a
nonlinear support vector machine (SVM) to high temporal-
resolution physiological waveform data and achieved an 84%
accuracy for predicting sepsis onset. Gwadry-Sridhar et. al
[3] used twenty clinical variables and a decision tree to achieve
nearly 100% predictive accuracy.

Despite their high accuracies, these methods all suffer
from similar faults. The studies were all performed on ex-
tremely small samples of 30 or fewer patients, and the re-
producibility of their results has yet to be determined. Ad-
ditionally, each method required data that are difficult or
overly invasive to gather in regular clinical settings; for ex-
ample, Lukaszewski’s approach required daily blood draw
and time-consuming quantification protocols, and Gwadry-
Sridhar’s required chest X-rays. Finally, none of these pro-
posed methods could reliably deal with missing data.

2.4 Septic shock prediction
Other recent work has focused on early prediction of septic

shock. A septic shock early warning system (EWS) was de-
veloped using multivariate logistic regression on commonly
measured clinical variables [11]. Using a dataset with 65
septic shock and 185 sepsis only patients, the model could
predict the onset of septic shock one hour in advance with an
area under the receiver operating characteristic curve (AUC)
of 0.928. However, the system used invasively-gathered data
and extracted features from the MIMIC waveform data,
which provide higher time-resolution than data more com-
monly available in most ICUs. Another study performed Re-
cursive Partitioning and Regression Tree (RPART) analysis
on 1864 septic patients to identify early predictors from clin-
ical data of hospitalized non-ICU patients [15]. The model
required results from eleven basic, routine laboratory tests
and certain vital signs, and correctly identified only 55%
of the septic shock patients. Furthermore, neither papers
addressed problems with missing data.

Several other models have been developed to predict sep-
tic shock in the absence of full featured data. Pereira et. al
used Zero-Order-Hold (ZOH) method to deal with incom-
plete data and Fuzzy C-Means algorithm with Partial Dis-
tance Strategy (FCM-PDS) to predict the outcome on 121
patients with abdominal septic shock [7] with an AUC of
0.899. Another paper also used the ZOH method to deal
with incomplete data and compared the accuracy of fuzzy
models and neural networks on the same abdominal shock
dataset with 121 patients [2]. Using 28 features, the fuzzy
model with bottom-up feature selection obtained an AUC
of 0.818. Although the features are the most frequently
measured variables found in the abdominal shock database,
they rely heavily on laboratory results and invasive mea-
surements. Additionally, it is uncertain whether the model
can generalize to all ICU patients. Paetz uses the centers
of gravity to replace missing observations and a trapezoidal
function neural network to classify data from 874 patients
[6]. However, the experiment used results from several lab-
oratory tests, utilized invasive catheter measurements, and
required at least 10 of the 12 variables to be present. The
model only correctly classifies ∼70% of the test data and
has a sensitivity of 15.01%.

3. METHODS

3.1 Patient selection
This study examined adults (>18 years of age at time of

admission) from the MIMIC II database who had only one
ICU admission over the course of their hospital stay. We ex-
clude patients younger than 18 years of age to avoid (1) con-
founding factors arising from their different physiologies and
(2) complications arising from the need to obtain informed
consent from parents when migrating our model to other
clincial data sets. To ensure that we had enough data for
our septic shock models, we only included those patients who
had at least ten observations of blood pressure (BP), heart
rate (HR), respiration rate (RR), blood oxygen saturation
measured by pulse oximeter (SpO2), temperature (TEMP),
and two observations of white blood cell count (WBC). Sep-
tic patients were identified based on their ICD-9 codings
(“995.91” or “995.92”) assigned after hospital discharge.

Patients with septic shock were identified by examining
their clinical chart records, with time of onset determined



using criteria modified from those used by Shavdia [11]. Due
to the low frequency of blood pressure observations in our
data (>30 min between measurements), we defined a hy-
potension observation as any time point where systolic blood
pressure (SBP) was <90 mmHg. Consecutive hypotension
observations were then aggregated to define a hypotension
region. Total fluid intake from one hour prior to the first
hypotension observation in a hypotension region to halfway
through the region was calculated. Any hypotension region
that had a total fluid intake >600 mL was classified as septic
shock, with onset defined as the start time of this region.

Of the 12,179 patients included in our study, 1,310 (∼
10.8%) were diagnosed with sepsis or severe sepsis. Of the
septic patients, 586 (∼44.7%) were diagnosed with septic
shock according to their ICD-9 codings. Noisy, inconsistent,
and infrequent measurements for fluid intake and blood pres-
sure prevent us from identifying the precise time of onset
for all septic shock patients. Consequently, only 328 of the
patients diagnosed with septic shock (∼25.0% of all septic
patients) were used in the study.

3.2 Predictive models for sepsis
We generated two sets of features for each patient. The

first set represented a patient’s clinical history and consisted
only of information available when the patient was first ad-
mitted into the ICU; these features included demographic
data (gender and ages at hospital and ICU admission), med-
ical history (flags indicating previous hospital and ICU ad-
missions), basic health data (weight and physician calcu-
lated SOFA and SAPSI scores), and the ICU unit into which
the patient was entering.

The second set included the first non-invasive measure-
ment of four physiological variables (BP, HR, RR, and SpO2).
These features were meant to capture the patient’s initial
physiological state upon entering the ICU, and therefore,
only data taken within the first six hours of ICU admis-
sion were considered. Measurements taken after the first six
hours were treated as missing data that would later have to
be imputed.

We developed two sets of multivariate logistic regression
models to predict which patients would develop sepsis at
some point in their ICU stay. The first set of models used
only the clinical history features and included models that:
(1) used all available features, (2) performed forward step-
wise regression, and (3) performed backwards stepwise re-
gression. The second set used both the clinical history and
the initial physiological state features, and again, models
that used all available features, performed forward step-
wise regression, and performed backward stepwise regression
were developed.

3.3 Predictive models for septic shock
Sepsis patients without an ICD-9 code for septic shock

were assigned an onset time halfway between their first and
last available BP measurement. A feature matrix of physio-
logic and laboratory values was generated based on a speci-
fied time prior to the onset or the reference time. Each data
matrix contained basic information available at ICU admis-
sion, the most recent non-missing observation at reference
time, and a baseline calculated from the mean of the pre-
vious 5 or fewer non-missing observations. A list of all the
physiological features extracted from the clinical database is
found in Table 1. Feature matrices were created at reference

Table 1: Physiologic and laboratory features for
predicting septic shock

Baseline and recent value
Cardiac: SBP, HR, PP (= SBP - DBP)
Respiratory: RR, SpO2

Other: TEMP
where DBP = diastolic BP, PP = pulse pressure

Recent value only
WBC
Arterial pH
Shock Index = HR / SBP

Table 2: Availability of the physiological measure-
ments for septic shock prediction

Feature % missing Feature % missing
RR 0.30 Mean RR 1.71
TEMP 1.10 Mean TEMP 6.43
SpO2 0.40 Mean SpO2 2.11
Mean HR 1.20 Mean SBP 1.20
Mean PP 1.20 Weight 4.92
APH 29.62 WBC 5.82
SOFA 25.20 SAPS-I 28.92

times of 30, 60, 90, and 120 minutes prior to the onset of
septic shock.

We used three different models, multivariate logistic re-
gression, a linear kernel support vector machine, and regres-
sion trees to predict septic shock on the feature matrices.
For logistic regression, we trained a set of three models at
each reference time: one incorporating all available features,
the second using forward stepwise regression, and the third
using backward stepwise regression.

Our choice for using logistic regression for predicting sep-
sis risk as well as septic shock onset was motivated by the
fact that such models are relatively simple to implement, can
handle non-linear effects, and return readily interpretable
results. Support vector machines and regression trees were
also included because they have been used in previous septic
shock work.

3.4 Missing value imputation
The lack of consistent sampling found in the MIMIC II

database resulted in missing physiological, laboratory, and
severity score values. Missing data were more prominent in
the sepsis shock dataset, where physiological measurements
were often not available in the required time windows. Ta-
ble 3.4 shows the percentage of patients missing a particular
feature. Although the missing values only comprised 6.7% of
all observations, excluding patients without the full feature
matrix would have reduced the size by of our dataset 47.2%.
Consequently, techniques for imputing missing values were
necessary.

Simple and accessible approaches were used to estimate
the missing observations. The effectiveness of using the con-
ditional mean for recommendation systems led us to our first
two imputation methods: mean feature values derived from
patient gender and mean feature values derived from the
patients’ gender and age group. Matrix factorization-based



Table 3: AUC comparison for sepsis models using
non-imputed and imputed feature sets

None Imputed
All H 0.791±0.004 0.792±0.003
Stepwise H 0.790±0.003 0.791±0.004
All H ∪ P 0.821±0.002 0.822±0.002
Stepwise H ∪ P 0.823±0.002 0.823±0.002
H = clinical history feature set
P = initial physiological state feature set

approaches were also used to impute missing values. The
BioConductor pcaMethods package [12] offered three miss-
ing value estimators. SVDImpute used a linear combination
of k-eigenvalues to predict the missing value [16]. Prob-
abilistic Principal Component Analysis (PPCA) combined
an Expectation-Maximization (EM) approach to Principal
Component Analysis (PCA) with a probabilistic model [9].
Bayesian PCA (BPCA) used a likelihood function that pe-
nalizes data “far” from the training set with an EM PCA to
estimate the missing values [5].

The optimal number of principal components (k) for SVDIm-
pute, PPCA, and BPCA was calculated using cross-validation
on the complete training dataset with no missing observa-
tions. 10% of the data was removed at random and the
root mean square error (RMSE) was calculated between the
predicted matrix and actual matrix. The k resulting in the
lowest RMSE for the imputation method was used on the
full training dataset with missing entries.

4. RESULTS

4.1 Sepsis
Since no previous studies on predicting sepsis risk used a

similar set of features, we had no“gold standard”with which
we could evaluate our models’ performance and instead used
cross validation to obtain estimates for our models’ perfor-
mance.

Table 3 shows the average cross-validated AUC for the
various models using non-imputed and imputed methods.
Imputation by means (feature values derived from the pa-
tient’s gender and age group), SVD, and BPCA all yielded
identical mean AUC estimates. We note that for a given
feature set, both forward stepwise and backward stepwise
regression selected the same subset of features (shown in
Table 4), and that models that incorporated all of the avail-
able features outperformed models that performed feature
selection. More importantly, we note that models that in-
corporated initial physiological state information performed
significantly better than models that relied only on clinical
history. This suggests that a patient’s trajectory toward
sepsis-related complications may be determined soon after
admission into the ICU.

These results also show that the choice of imputation
method has no significant impact on performance of the
models. However, this observation is not entirely surpris-
ing, as the data used to predict sepsis risk are relatively
complete, with <7% of all the data missing.

4.2 Septic Shock
The septic shock EWS [11] was used as the “gold stan-

dard” for evaluating predictive performance for septic shock

Table 4: Logistic regression coefficients for four
imputation models predicting sepsis

None Mean SVD BPCA
Admit age 0.013 0.013 0.013 0.013
Weight 0.601 0.595 0.590 0.589
Prev. hosp. 0.370 0.371 0.372 0.375
In MICU -0.643 -0.570 -0.571 -0.565
CSRU service -1.109 -1.032 -1.028 -1.022
MICU service 2.122 2.047 2.048 2.036
SICU service 0.769 0.758 0.761 0.757
HR 0.012 0.011 0.011 0.011
RR 0.026 0.025 0.025 0.027
SBP -0.017 -0.018 -0.018 -0.018
Temp 0.069 0.074 0.072 0.076
SOFA 0.147 0.153 0.147 0.152

Table 5: AUC comparison with the septic shock
EWS model

Feature Selection EWS Features Our Features
All 0.716±0.094 0.775±0.092
Forward stepwise 0.799±0.078 0.786±0.097
Backward stepwise 0.786±0.087 0.773±0.090

onset. A majority of the features were replicated except
for cardiac output estimate and total peripheral resistance
which derive from waveform data. Any patient without data
for all the features from both models was omitted from the
test. Consequently, the comparison was performed on 406
patients, of which 62 transition to septic shock. Three lo-
gistic regression models were trained for each set of model
features: (1) all the features, (2) forward stepwise regression,
and (3) backward stepwise regression. Table 5 summarizes
the performance comparison for predicting septic shock 60
minutes before onset. The results show that use of noisy, in-
consistently gathered clinical measurements instead of high-
resolution waveform data causes a noticeable degradation in
AUC of the septic shock EWS. Although the septic shock
EWS slightly outperforms our model, it relies on frequent
and invasive measurements, thereby reducing its utility in
many clincial settings.

The logistic regression models illustrate the effect of im-
putation for predicting septic shock. Table 6 presents the
comparison of AUC to the baseline model which discards
the missing data. Imputation approaches show improvement
across every reference time. In particular, BPCA generally
has the highest AUC in comparison to the other methods.
Furthermore, there is a degradation in accuracy as t (time
before onset) grows. Figure 1 shows the ROC curves ob-
tained for three of the imputation methods compared to the
baseline model, and clearly bring out the benefits of impu-
tation for increased predictive performance.

Table 7 demonstrates the effect imputation has on the lo-
gistic regression coefficients for predicting septic shock 60
minutes before onset. The coefficients are quite consistent
across the different imputation techniques, but for some vari-
ables differ substantially from the values obtained without
imputation. In particular, the non-imputed model focused
on mean TEMP, SpO2, and mean SpO2 features. Although
they are prominent features in the imputed models, the ef-
fects are dampened in conjunction with an increase of the
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Figure 1: ROC curves for the full featured logistic
regression model predicting septic shock 60 minutes
before onset comparing 3 of the imputation methods
with the baseline.

Table 6: AUC comparison of the full-featured
logistic regression model using various imputation
methods to predict septic shock

Time t before onset
Method 30 min 60 min 120 min
None 0.764±0.050 0.728±0.041 0.699±0.045
Mean 0.822±0.026 0.798±0.025 0.751±0.029
SVD 0.854±0.010 0.848±0.007 0.831±0.018
PPCA 0.855±0.009 0.852±0.007 0.828±0.016
BPCA 0.853±0.010 0.847±0.007 0.829±0.017

shock index measurement. The coefficients also illustrate the
importance of imputation to provide a proper interpretation
of the roles of all the variables. Restricting the dataset to
only patients with all the features eliminated almost half of
the data and decreased the coverage of the feature space.
Consequently, the non-imputed model suffered from overfit-
ting. However, the majority of the discarded data was only
missing several features. Imputation allowed the prediction
models to leverage these patients to obtain a more accurate
representation of the weights of the features.

Table 8 presents an AUC comparison of septic shock pre-
diction 60 minutes before onset for three types of models:
(1) logistic regression (LogR), (2) linear kernel support vec-
tor machine (SVM), (3) regression trees (RPART) [14]. All
three models show an increase in AUC for the various impu-
tation methods. In particular, BPCA and PPCA perform
comparably across the different classifier types.

Table 7: Logistic regression coefficients for four
imputation models predicting septic shock

Imputation
Feature None Mean SVD BPCA
SBP -4.035 -0.404 -0.343 -0.281
Mean SBP 0.721 -1.726 -1.775 -1.692
PP -1.464 -0.615 -0.630 -0.600
Mean PP -0.262 0.829 0.956 0.673
HR 1.158 -1.129 -1.169 -1.244
Mean HR -1.038 -0.517 -0.531 -0.507
RR 1.722 1.961 1.930 1.890
WBC -0.023 -0.461 -0.354 -0.191
Mean TEMP -34.182 -13.595 -13.967 -12.277
SpO2 -14.898 -6.508 -6.150 -6.154
Mean SpO2 -10.709 -2.069 -1.829 -1.512
APH -3.598 -3.417 -3.482 -3.455
SI 1.523 3.710 3.744 3.800

Table 8: AUC comparison of various model types
using different imputation methods to predict septic
shock

Model Type
Method LogR SVM RPART
None 0.728±0.041 0.599±0.326 0.613±0.063
Mean 0.798±0.025 0.861±0.209 0.731±0.026
SVD 0.848±0.007 0.793±0.247 0.869±0.026
PPCA 0.852±0.007 0.874±0.218 0.873±0.018
BPCA 0.847±0.007 0.882±0.190 0.867±0.020

5. CONCLUSION
This paper presented a novel approach to accurately pre-

dicting both sepsis risk and septic shock from noisy, inter-
mittently gathered clinical data. The features we chose min-
imize the use of laboratory tests and invasive procedures
while still allowing us to maintain comparable performance
to other models. Moreover, they can be applied to large
datasets that could have substantial amounts of noise and
missing values.

The combined results of our experiments show the effects
that imputing missing data can have on improving model
performance, especially when dealing with larger, noisier,
and more incomplete datasets encountered in modern clin-
ical studies. These results also indicate that imputing us-
ing matrix factorization methods like BPCA lead to models
with better predictive accuracy than imputing with simpler
approaches like group means.

The models presented in this work show promise in their
ability to decrease morbidity rates resulting from septic shock
and improve the outcome for sepsis patients. Future work
will focus more on directly incorporating time series analy-
ses into the current system to further help in predicting the
onset of sepsis and septic shock.
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