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Abstract. Electronic health records (EHRs) are becoming an increas-
ingly important source of patient information. Unfortunately, EHR data
do not always directly and reliably map to medical concepts that clini-
cal researchers need or use. Some recent studies have focused on EHR-
derived phenotyping, which aims at mapping the EHR data to specific
medical concepts; however, most of these approaches require labor inten-
sive supervision from experienced clinical professionals.

In this paper, we use Limestone, a nonnegative tensor factorization
method to derive phenotype candidates from claims data with virtually
no human supervision. Limestone represents the interactions between
diagnoses and procedures among patients naturally using tensors (a gen-
eralization of matrices). The resulting tensor factors are reported as phe-
notype candidates that automatically reveal patient clusters on specific
diagnoses and procedures. To the best of our knowledge, this is the first
study that successfully extracts useful phenotypes by applying sparse
nonnegative tensor factorization to a large, public-domain EHR dataset
covering a broad range of diseases. Our experiments demonstrate the in-
terpretability and the promise of high-throughput phenotypes generated
from tensor factorization.

Keywords: EHR phenotyping, tensor factorization, dimensionality
reduction.

1 Introduction

Electronic health records (EHRs), an important source of detailed patient in-
formation, are increasingly becoming prevalent within the U.S healthcare sys-
tem, with federal incentives for meaningful use of EHRs serving as a major
driving force. The complexity of the data stored in EHR systems has grown
with the widespread adoption of EHRs. EHRs are composed of a diverse ar-
ray of data, such as structured information (e.g. diagnosis, medications, lab
results), molecular sequences, unstructured clinical progress notes, and social
network information. Effective integration and efficient analysis of EHRs help
physicians make informed clinical decisions; providers improve patient safety;
and researchers discover new knowledge and facilitate investigations [1]. While
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data-driven approaches are revolutionizing the field of medical informatics [1–3],
several formidable challenges arise from the application of EHR data to clini-
cal research. These include: (i) diverse population, where the data cover patients
from various providers who use different and incompatible EHR systems; (ii) het-
erogeneous and noisy information; (iii) sparsely sampled event sequences with
varying time scales; (iv) modeling interactions amongst different data sources
(types); and (v) reluctance of medical practitioners to act on any recommenda-
tions unless they can understand the findings and reconcile them with existing
domain knowledge. The interpretability constraints arise because medical pro-
fessionals are accustomed to reasoning based on concise and meaningful medical
concepts, or phenotypes. Recent work has focused on EHR-based phenotyping,
a process to map raw EHR data into meaningful medical concepts, Phenotyping
approaches learn medically relevant characteristics of the data [4] and is crucial
for supporting genome-wide association studies [5].

State of the art phenotype developments rely primarily on approaches that are
heuristic, rule, and iterative based, and are a collaborative team effort between
clinicians and IT experts [4, 6]. Examples of large-scale phenotyping efforts are
typified by the Electronic Medical Records and Genomics (eMERGE) Network
[7], which explores the use of EHRs to obtain phenotypic information at multi-
ple medical institutions, and the Observational Medical Outcomes Partnership
(OMOP) [8]. However, phenotypes are often disease-centric and the development
of a phenotype for a single disease can take months [9]. Thus, data mining and
machine learning tools have been leveraged for high-throughput phenotyping,
or efficient and automated phenotype extractions to reduce manual develop-
ment [4, 10]. Yet, current high-throughput methodologies cannot generate large
amounts of candidate phenotypes and achieve good performance without human
annotated samples [10]. Therefore, two major limitations of existing phenotyping
efforts are (i) the need for human annotation of case and control samples, which
take substantial time and effort and (ii) the lack of formalized methodology to
derive novel phenotypes.

One possible approach for high-throughput phenotyping of EHR data is to
use dimensionality reduction techniques [4]. The “ideal” phenotype (i) repre-
sents complex interactions between several sources, (ii) is concise and easily un-
derstood by a medical professional, and (iii) maps to domain knowledge. Thus,
phenotyping can be viewed as a form of dimensionality reduction, where each
phenotype forms a latent space [4]. Matrix factorization, a common dimension-
ality reduction approach, is insufficient as it cannot concisely capture structured
EHR source interactions, such as multiple procedures performed to treat a single
disease. A more natural transformation is tensor factorization, which utilizes the
multiway structure to produce concise and potentially more interpretable results.
We recently proposed Limestone, a nonnegative tensor factorization model, to
simultaneously generate multiple phenotypes from EHR data with minimal hu-
man supervision [11] for the problem of characterizing heart failure. Our pilot
study extracted 50 phenotypes from Geisinger Health System’s EHRs that were
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Table 1. List of notations used in this paper

Symbol Definition

λ,a vector
A matrix

X ,M tensor
i tensor element index (i1, i2, · · · , iN )
xi tensor element at index i
◦ outer product

evaluated by an experienced cardiologist. The results were extremely promising,
as 82% of the phenotypes generally mapped to a medical concept.

This paper briefly describes the Limestone model and evaluates the model
on a publicly available, realistic set of claims data covering a much broader
range of diseases. Our experimental results demonstrate the conciseness of the
resulting phenotypes. Furthermore, we analyze the phenotypes associated with
four common chronic disease conditions.

2 Preliminaries and Related Work

This section describes the preliminaries of matrix and tensor decomposition and
related tensor factorization work. Table 1 provides a key for the symbols used in
the paper. For indexing of matrix A, we denote the (i, j)th element as aij and
the jth column as aj .

Matrix Decomposition. Matrix factorization (MF) is a common dimen-
sionality reduction approach, which represents the original data using a lower
dimensional latent space. Standard MF approaches find two lower dimensional
matrices that when multiplied together approximately produce the original ma-
trix, X ≈ WH. Although many matrix decomposition techniques exist, singular
value decomposition and nonnegative matrix factorization (NMF) are two com-
mon algorithms used to reduce the feature dimension.

Tensor Decomposition. A tensor is a generalization of matrices to higher
dimensions. Tensor representations are powerful because they can capture rela-
tionships for high-dimensional data. A tensor is rank-one if it can be written as
follows:

Definition 1. The outer product of N vectors, a(1) ◦ a(2) ◦ · · · ◦ a(N), pro-
duces a rank-one, N th order tensor X where each element xi = xi1,i2,··· ,iN =

a
(1)
i1

a
(2)
i2

· · ·a(N)
iN

.

Tensor factorization (decomposition) is a natural extension of matrix factor-
ization and utilizes information from the multiway structure that is lost when
modes are collapsed to use matrix factorization algorithms [12, 13]. The CAN-
DECOMP / PARAFAC (CP) [14, 15] model is a common tensor decomposition
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and can be viewed as a higher-order generalization of singular value decompo-
sition [16]. The CP model approximates the original tensor X as a sum of R
rank-one tensors and can be expressed as

X ≈
R∑

r=1

λra
(1)
r ◦ . . . ◦ a(N)

r

= �λ;A(1); . . . ;A(N)�.

Note that �λ;A(1); . . . ;A(N)� is shorthand notation to describe the CP decom-

position, where λ is a vector of the weights λr and a
(n)
r is the rth column of

A(n). The CP tensor decomposition has been used for concept discovery [17],
network analysis of fMRI data [18], and community discovery [19]. The details
of computing the CP decomposition and other tensor decomposition models can
be found in [16].

Some domain applications may desire nonnegative components, a higher-order
generalization of NMF. Nonnegative tensor factorization (NTF) requires the el-
ements of the factor matrices and the weights to be nonnegative. A broad survey
of practical and useful NMF and NTF algorithms can be found in [20]. Our pa-
per will focus on the nonnegative CP alternating Poisson regression (CP-APR)
model to fit sparse count data [21]. For convenience, the CP-APR optimization
problem is provided:

min f(M) ≡
∑

i

mi − xi logmi

s.t M = �λ;A(1); ...;A(N)� ∈ Ω

Ω = Ωλ ×Ω1 × · · · ×ΩN

Ωλ = [0,+∞)R

Ωn = {A ∈ [0, 1]In×R | ||ar||1 = 1 ∀r},
where M is the CP tensor factorization that approximates the observed tensor
X , Ω is the sample space of M, and In refers to the size of the nth mode.
Details of the algorithm and model are presented in the paper by Chi and Kolda
[21].

3 Limestone Overview

Limestone is a tensor factorization model to achieve high-throughput phenotyp-
ing from EHR data. The model is an extension of CP-APR to produce concise
phenotype definitions for better interpretability. For this paper, we construct
a tensor using the count of the co-occurrences between diagnoses and proce-
dures. Thus, each tensor element denotes the number of times a procedure p
is performed to treat diagnosis d for patient p. This third-order tensor is then
approximated using the CP decomposition M = �λ;A(1),A(2),A(3)�, shown in
Figure 1. The factor matrix for the nth mode,A(n), defines the elements from the
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Fig. 1. Generating candidate phenotypes from the patient × diagnosis × procedure
tensor using CP tensor factorization

Fig. 2. An example of the kth candidate phenotype produced from the tensor factor-
ization, and the interpretation of the tensor factorization result. The green text, blue,
and red text correspond to non-zero elements in the patient, diagnosis, and medication
factors, respectively.

mode that comprise the candidate phenotypes. Limestone minimizes the pres-
ence of “minuscule and unnecessary” factor components via a hard-thresholding
operator [22]. The hard-threshold constraint sets individual factor components

a
(n)
jr that are below a specified threshold (γn) to zero.
We provide an illustrative example of a Limestone phenotype from the claims

record data in Figure 2. Given the kth phenotype, a
(j)
ik represents the probability

of seeing the ith element in the jth mode. In our example, hypertensive disease
was the only non-zero element in the kth column of the diagnosis factor matrix
while there are 5 non-zero elements in the kth column of the procedure factor
matrix. The percentage of patients with the phenotype is calculated using the
percentage of non-zero elements in the jth column of the patient factor ma-
trix. The candidate phenotype shows that 45.4% of the patients had a non-zero
element in the kth column.
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4 Experimental Results

4.1 Data Description

The Centers for Medicare and Medicaid Services (CMS) provides the CMS Link-
able 2008-2010 Medicare Data Entrepreneurs’ Synthetic Public Use File (DE-
SynPUF), a publicly available dataset that contains inpatient, oupatient, carrier,
and prescription drug event claims in addition to the patient summary files. The
claim records have been synthesized from 5% of the 2008 Medicare population,
spans 3 years, and is over 100 gigabytes (GB) in size . Although the relation-
ships between some of the variables have been altered to protect the privacy
of the beneficiaries, the data can still provide interesting and insightful pheno-
types. A detailed description of the data can be found on the CMS website1.
Our experiments focus on a random subset of 10,000 patients from Sample 1
(CMS released the data in 20 separate samples). The EHR tensor is constructed
from the carrier claim records using the diagnosis and procedure codes. Since
individual International Classification of Diseases (ICD-9) diagnosis codes and
Healthcare Common Procedure Coding System (HCPCS) procedure codes cap-
ture fine-grained information, we grouped the codes using the Unified Medical
Language System Metathesaurus2, which contains the source vocabularies for
over 150 sources, including ICD-9-CM and HCPCS. Aggregating the individ-
ual diagnosis codes and procedure codes results in a constructed tensor that is
10,000 patients by 129 diagnoses by 115 procedures.

4.2 Threshold Selection

Limestone uses predefined thresholds for each mode, γn, to zero out “probabilis-
tically unlikely” elements. These thresholds provide a tunable knob to adjust
the conciseness of the candidate phenotypes. Domain constraints can be used to
determine the threshold values (e.g., a phenotype should only contain a maxi-
mum of 3 unique diagnoses). However, we explore the effect of the threshold on
the number of non-zero phenotypes along the diagnosis and procedure modes.
Figure 3 shows a boxplot of the number of non-zero elements per phenotype
based on the various threshold values. Note that a low threshold (γ = 0.001)
results in a large number of elements. As the threshold increases, the pheno-
types become more concise and more easily interpretable. Based on the plots,
the threshold of 0.05 was chosen to allow for slightly more complex phenotype
definitions.

1 The website URL is
http://www.cms.gov/Research-Statistics-Data-and-Systems/

Statistics-Trends-and-Reports/SynPUFs/DE Syn PUF.html
2 Information about Metathesaurus is located at
http://www.nlm.nih.gov/research/umls/knowledge sources/

metathesaurus/index.html

http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/SynPUFs/DE_Syn_PUF.html
http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/SynPUFs/DE_Syn_PUF.html
http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
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(b) Procedure

Fig. 3. The distribution of factor elements along the three CMS tensor modes. Zeros
entries are omitted from the plot.

4.3 Chronic Disease Phenotypes

The United States spends more than 75% of its medical care cost on the treat-
ment of chronic diseases [23]. Furthermore, 68.4% of the Medicare population
suffers from 2 or more chronic diseases [24]. Thus, phenotypes relating to chronic
disease factors such as heart failure, diabetes, and arthritis can help medical
professionals tailor treatment options based on patient’s phenotypes and reduce
overall healthcare costs. The dataset provides chronic disease indicators that we
will use to identify phenotypes associated with specific chronic diseases3.

Table 2. Two phenotypes related to heart failure. The blue and red colors indicate
the diagnosis and procedure elements respectively. Within each type, the elements are
ordered in decreasing magnitude.

Heart Failure Phenotype 1
(36.7% of patients)

Other forms of heart disease

Complications of surgical and medical care
Hematology and Coagulation Procs.
Eval. and Mgmt. of Office or Other Outpatient Svcs.
Surgical Procs. on the Cardiovascular System
Chemistry Pathology and Laboratory Tests
Cardiovascular Procs.
Organ or Disease Oriented Panels

Heart Failure Phenotype 2
(30.9% of patients)

Other forms of heart disease
Ischemic heart disease

Hospital Inpatient Svcs.
Eval. and Mgmt. of Office or Other Outpatient Svcs.

Table 2 depicts two phenotypes related to heart failure. More than 1 in 3
Medicare patients exhibit the first phenotype while a smaller portion (but still
substantial) have medical characteristics typified by the second phenotype. The

3 A patient’s chronic condition flag cannot be perfectly reproduced due to the synthetic
claim process used.



High-throughput Phenotyping 149

Table 3. Four phenotypes related to diabetes and arthritis. The blue and red col-
ors indicate the diagnosis and procedure elements respectively. Within each type, the
elements are ordered in decreasing magnitude.

Diabetes Phenotype 1
(34.8% of patients)

Diseases of other endocrine glands
Other metabolic and immunity disorders

Eval. and Mgmt. of Office or Other Outpatient Svcs.
Surgical Procs. on the Cardiovascular System
Ophthalmology Procs.
Cardiovascular Procs.
Urinalysis Procs.
Diagnostic/Screening Processes or Results

Diabetes Phenotype 2
(33.1% of patients)

Diseases of other endocrine glands

Chemistry Pathology and Laboratory Tests
Organ or Disease Oriented Panels
Hematology and Coagulation Procedures
Surgical Procs. on the Cardiovascular System
Eval. and Mgmt. of Office or Other Outpatient Svcs.

Arthritis Phenotype 1
(29.1% of patients)

Arthropathies and related disorders

Physical Medicine and Rehabilitation Procs.
Eval. and Mgmt. of Office or Other Outpatient Svcs.

Arthritis Phenotype 2
(38.6% of patients)

Arthropathies and related disorders
Rheumatism, excluding the back

Eval. and Mgmt. of Office or Other Outpatient Svcs.
Surgical Procs. on the Musculoskeletal System
Surgical Procs. on the Cardiovascular System
Cardiovascular Procs.
Hematology and Coagulation Procs.

second phenotype suggests a higher degree of severity as there is an additional
heart disease and it requires hospital inpatient services. The two phenotypes
demonstrate the potential ability to derive novel phenotypes via a data-driven
approach that could otherwise be difficult and time-consuming.

Table 3 depicts another four chronic-disease phenotypes relating to diabetes
and arthritis. There are several other chronic disease phenotypes that were ex-
tracted, but due to space constraints are not shown in this paper. Note that these
phenotypes shown are concise and easily interpretable. In particular, arthritis
phenotype 1 contains just 1 diagnosis and 2 procedures and is exhibited in 29%
of the population. The procedures are also consistent with known character-
istics of the disease, as arthritis sufferers undergo rehabilitation to strengthen
their joints. Similar to Table 2, the four phenotypes also demonstrate the power
to automatically capture disease severity. Diabetes phenotype 1 suggests dia-
betes related complications that require cardiovascular surgery, while the second
arthritis phenotype captures patients with multiple chronic conditions.

5 Conclusion

This paper shows that Limestone offers a data-driven solution to simultaneously
generate multiple phenotypes from a diverse EHR population without expert
supervision. The experimental results on 10,000 patient records from the CMS
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De-SYNPUF dataset demonstrate the conciseness and interpretability of the ten-
sor derived phenotypes. The phenotypes underscore the promise of Limestone for
high-throughput phenotyping with minimal human intervention. Limestone can
potentially be used to rapidly characterize, predict, and manage a large num-
ber of diseases, thereby promising a novel, data-driven solution that can benefit
very large segments of the population. Future work will focus on generalizing
the sparse nonnegative tensor factorization to multi-relational tensors [19] to
incorporate multiple EHR data sources and examine quasi-Newton methods to
improve computational speed of the algorithm [25].
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