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Abstract

Cardiac arrest is a deadly condition caused
by a sudden failure of the heart with an in-
hospital mortality rate of ∼ 80%. Therefore,
the ability to accurately estimate patients at
high risk of cardiac arrest is crucial for im-
proving the survival rate. Existing research
generally fails to utilize a patient’s tempo-
ral dynamics. In this paper, we present two
dynamic cardiac risk estimation models, fo-
cusing on different temporal signatures in a
patient’s risk trajectory. These models can
track a patient’s risk trajectory in real time,
allow interpretability and predictability of a
cardiac arrest event, provide an intuitive vi-
sualization to medical professionals, offer a
personalized dynamic hazard function, and
estimate the risk for a new patient.

1 Introduction

Cardiac arrest is an abrupt cessation of heart func-
tion that prevents blood circulation. Disturbances
in the electrical system of the heart may lead to ab-
normal heart rhythms, halting the pumping action of
the heart. Common causes of cardiac arrest are ven-
tricular tachycardia (irregular heartbeat caused by a
fast heart rate), ventricular fibrillation (uncontrolled
twitching of the heart muscles), asystole (sudden pause
of heart muscle contractions), or pulseless electrical
activity (no detectable heartbeat). For every 1000
hospital admissions, approximately 5 patients expe-
rience a cardiac arrest event with a mortality rate of
∼ 80% (Sandroni et al., 2007). Studies have shown
that ∼ 62% of cardiac arrests could been prevented
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based on clinical evidence of deterioration 8 hours prior
to the event (Hodgetts et al., 2002; Sandroni et al.,
2007; Churpek et al., 2012). In addition, a quick re-
sponse to cardiac arrest can decrease the mortality
rate to 60% (Andréasson et al., 1998; Sandroni et al.,
2004). However, the inability to correctly identify pa-
tients with sufficient intervention time limits the effec-
tiveness of emergency response teams (Churpek et al.,
2012). Therefore, accurate identification of at-risk pa-
tients is critical to minimizing the number of cardiac
arrests and improving the survival rate.

The advent of electronic health records (EHR) has in-
creased the availability of medical data. The Multi-
parameter Intelligent Monitoring in Intensive Care II
(MIMIC-II) database is the most extensive and pub-
licly available intensive care unit (ICU) resource. It
was developed to support research in clinical deci-
sion support and critical care medicine (Saeed et al.,
2011). Data was collected over 30,000 ICU patients
during 2001 to 2007 from Boston’s Beth Israel Dea-
coness Medical Center. The MIMIC-II database allows
us to explore and evaluate models to estimate the risk
of cardiac arrest over a large population of patients.

Recent research has focused on establishing early
warning scores or criteria for predicting patients at
high risk of experiencing a cardiac arrest. Many pub-
lished physiologically-based criteria exist to detect pa-
tient deterioration and could be used to predict ad-
verse outcomes (Smith and Wood, 1998). One set
of early detection criteria used doctor or nurse con-
cerns, respiratory rate, blood pressure, and temper-
ature measurements to alert an emergency response
team (Hodgetts et al., 2002). However the various
criteria, including the Modified Early Warning Score
(McBride et al., 2005) are based primarily on expert
opinion and have limited scientific validation (Churpek
et al., 2012). To address these shortcomings, Churpek
et al. (2012) proposed the use of a scoring system de-
rived from vital signs in the ward to detect clinical
deterioration. Although scoring systems or activation
criteria can identify high-risk patients, they are unable
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to predict the time of cardiac arrest. These systems
fail to capture temporal patterns in the physiological
measurements. Kennedy and Turley (2011) suggested
adding clinically relevant latent variables, trend fea-
tures, and seasonality features to supplement the raw
time series. Other approaches have involved searching
for temporal patterns within the data (Batal et al.,
2012; Wang et al., 2012). We propose an approach
based on dynamic time series models common in eco-
nomic forecasting to predict the time of cardiac arrest
for high-risk patients.

This paper presents two dynamic cardiac arrest risk
estimation (DYNACARE) models, variations of the
dynamic stochastic volatility factor model proposed
by Carvalho et al. (2011). We investigate the appli-
cation of a semi-supervised framework to a dynamic
non-linear regression model. The DYNACARE mod-
els (i) continuously track a patient’s cardiac risk tra-
jectory, (ii) allow interpretability and predictability of
a cardiac arrest event, (iii) provide an intuitive visual-
ization of a patient’s cardiac arrest, (iv) deliver real-
time results through a distributed implementation, (v)
provide a dynamic hazard function unobtainable via
traditional analysis, and (vi) generalize for any new
patient.

Notation Preliminaries. Lowercase letters repre-
sent scalars, for example λ, r. Lowercase boldface let-
ters, such as y,µ, are vectors. Uppercase boldface
letters correspond to matrices, for example Σ. The
subscript notation rt represents the value of r at time
t. r1:t is then the set of values from time 1 to time t.

2 DYNACARE Models

We model a patient’s cardiac arrest trajectory (CAT)
as a single latent factor, illustrated in Figure 1. The
sequence of physiological measurements are a function
of the patient’s CAT. The simplest model, a general
dynamic linear model with Kalman filter-forward steps
and backward smoothing, was unable to fully capture
the data. Figure 2 motivates the use of a stochastic
volatility (SV) model as the variance of the risk resid-
uals seemed to be auto-correlated.

The standard SV model assumes that the variance of
returns on assets follows a latent stochastic process
(Kim et al., 1998). Gibbs sampling can be used to ex-
plore the conditional posterior distribution of all the
states (Kim et al., 1998). Additionally, it has been
shown that a particle implementation of forward fil-
tering - backward smoothing can be used to simulate
the SV model (Doucet and Johansen, 2008). Carvalho
et al. (2011) proposed a stochastic volatility factor
model where the factors are driven by univariate SV

r1:t

Threshold model

Markov switching model

Figure 1: A sample cardiac risk trajectory and
the temporal signature associated with the two DY-
NACARE models.

models.

Our general DYNACARE model extends the general
dynamic linear model and assumes the variance of the
risk trajectory is driven by a SV model. Sections 2.1
and 2.2 present two instantiations of the DYNACARE
model. Equation block 1 illustrates our generalized
model. In DYNACARE, r is the latent factor CAT,
λ is the stochastic volatility term, and y is the set of
observations with f unique measurement types.

λt = λt−1 + δt δt ∼N(0, k2)

rt = αt + rt−1 + εt εt ∼N(0, exp(λt))

yt = µ + βrt + ηt ηt ∼N(0,Σ) (1)

Σ = diag(σ2
1 , σ

2
2 · · · , σ2

f )

Standard particle smoothing approaches to the
stochastic volatility model are insufficient for our
model as the latent factor is unrelated to the cardiac
arrest event. DYNACARE employs a semi-supervised
framework to link the obtained latent factors to the
rare event. Although we cannot ascertain the period
in which a patient is healthy or if any unrecorded or
unobserved cardiac arrest events transpired, our mod-
els incorporate the fact that we know a cardiac arrest
event occurred at a specific time point. This informa-
tion is utilized in the “backward smoothing” step of
our particle filtering algorithm. Thus, DYNACARE
provides interpretability of the latent factor as well as
predictability of the cardiac arrest event.

The general DYNACARE algorithm combines the
expectation maximization (EM) algorithm and par-
ticle smoothing. To prevent degeneracy, where a
single unique particle approximates p(r1:n|y1:T ) for
n << T , our algorithms use fixed-lag approxima-
tion. This leverages the forgetting properties of hid-
den Markov models such that for ∆ large enough,
p(r1:n|y1:T ) ≈ p(r1:n|y1:min(n+∆,T )). For each pa-
tient, we use a model-specific particle smoother with
fixed-lag approximation to estimate the latent vari-
ables. Model parameters are then obtained from the
estimated latent variables. The process iterates un-
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til convergence of the parameters occurs. The general
framework is outlined in Algorithm 1.

Algorithm 1 General DYNACARE patient algorithm
for i=1 : M do

Estimate r̂1:T with model-specific particle smoother
Learn βi,Σi given r̂1:T

end for
β,Σ as average of last 10 samples

We present two specializations of the DYNACARE
model that estimate risk of cardiac arrest for pa-
tients through a temporal CAT signature. The Markov
switching model uses a gradient-based approach to de-
fine cardiac arrest. The second model, the threshold
model, is a locality-based approach. Figure 1 shows
the temporal signature associated with the different
models.

2.1 Markov Switching Model

Markov switching model, also known as Markov
switching multifractal, is a widely adopted model-
ing framework in financial econometrics to incorpo-
rate heterogeneous stochastic volatility (Calvet and
Fisher, 2004). In DYNACARE Markov switching
model (MSM), we assume two heterogeneous dynam-
ics of the risk factor, namely a healthy and risky state.
These states govern the gradient (or difference) of the
observations. For MSM, cardiac arrest occurs when a
patient is at the risky state. Exploratory data anal-
ysis confirmed abrupt gradient changes for some car-
diac arrests and the risky state attempts to capture
such movements. The transition probability from the
healthy state (sh) to the cardiac-arrest risky state (sc)
is given as phc, and from the risky state to the healthy
state as pch. The stationary distribution of the two
states is then (πh, πc) = ( pch

pch+phc
, phc
pch+phc

).

Maximum likelihood (ML) estimation of these param-
eters would result in pch � phc, as the probability
of cardiac arrest events is extremely rare amongst all
the patients. However, this ML parametrization would
drastically decrease the sensitivity of the model. We
treat these transition parameters as knobs of the model
that control the model sensitivity. Note that the prob-
ability of staying in the healthy state for time T be-
fore jumping to the risky state is (1 − phc)

T pch. If
the desired cardiac arrest event notification time is
within time period Tmin, the parametrization should
satisfy the condition (1 − phc)

Tminpch > pthreshold.
For this work, we assume an equal stationary density
(πh, πc) = (0.5, 0.5) and phc = 0.2, but the settings
should be changed depending on the objectives. Our
experimental results, which are not provided due to
page length constraints, show that higher values of phc
results in both higher false positives and true positives.

Moreover, low values of pch and phc impart inertia on
the states.
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Figure 2: Auto-correlation of εt without the SV model
(top), and ε2

t vs Time for randomly selected four pa-
tients (bottom). High-variance noise co-occur in a
short time window.

The stochastic volatility (SV) model introduces an-
other independent underlying stochastic process in ad-
dition to the two-state Markov process. Figure 2
shows the auto-correlation of ε2

t without the SV model.
The result supports the use of time-varying variance.
We assume that the stochastic volatility model in
DYNACARE is wide-sense stationary, thus E[λt] =
1, Var(λt) = k2, where the variance k2 is sampled
from a non-informative Inverse-Gamma prior distri-
bution.

The risk trajectory in MSM is a function of these
two underlying processes, ut and λt. The stochastic
volatility term λt not only models the auto-correlation
among risk factor residuals (inter-correlation), but also
captures individual differences in the risk residuals
(intra-correlation). In other words, the variability of
the risk factor varies from person to person, as well as
from time to time. MSM can be formally written as
follows:

λt = λt−1 + δt δt ∼N(0, k2)

ut ∼ MarkovChain(u | ut−1) ut ∈{sh, sc} (2)

rt = αut + εt εt ∼N(0, exp(λt))

αut ∈ {αsh , αsc}, αsh 6= αsc

∆yt = yt − yt−1 = βrt + ηt ηt ∼N(0,Σ)

Σ = diag(σ2
1 , · · · , σ2

f )
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Table 1: Important MSM distributions
Joint distribution p(y1:T , r1:T , u1:T , λ1:T ,β,Σ) = p(y1:T |r1:T ,β,Σ)p(r1:T |u1:T , λ1:T )p(u1:T , λ1:T )p(β,Σ)
Filter forward p(rt+1, ut+1, λt+1|rt, ut, λt,y1:(t+1),β,Σ)

∝ p(yt+1|rt+1,β,Σ)p(rt+1|ut+1, λt+1)p(ut+1|ut)p(λt+1|λt)

Backward smooth p(r1:T , u1:T , λ1:T |y1:T ) = p(rT , uT , λT |yT )

1∏
t=T−1

p(rt, ut, λt|r(t+1):T , u(t+1):T , λ(t+1):T ,y1:t)

Figure 3 shows its graphical representation of the
model.

· · · ut−1 ut ut+1 ...

λt−1 λt λt+1 ...

· · · rt−1 rt rt+1 ...

· · · ∆yt−1 ∆yt ∆yt+1 ...

Figure 3: The graphical representation of the DY-
NACARE Markov switching model (MSM).

The joint distribution of MSM is described in Table 1.
DYNACARE uses the EM algorithm to estimate the
parameters β,Σ.

{r̂1:T , û1:T , λ̂1:T } ∼ E[r1:T , u1:T , λ1:T |y1:T ,β,Σ] (3)

{β̂, Σ̂} ∼ max p(y1:T , r1:T , u1:T , λ1:T |β,Σ)

Equation 3 can be efficiently simulated using a parti-
cle smoother, with steps detailed in Table 1. Partial
knowledge that the cardiac arrest event occurred at
the last time period is incorporated via the following:

p(uT = sc|yT ) ≈ 1 (4)

Algorithm 2 illustrates the overall procedure of per-
forming the MSM particle smoother.

2.2 Threshold Model

A threshold model is commonly used in toxicology to
model the concept that doses above a certain level are
dangerous, while anything below that is safe (Cox,
1987). Cardiac arrest is defined using a similar no-
tion, where the event occurs when the CAT exceeds
a specific value. In the DYNACARE threshold model
(THR), the risk trajectory is a function of only one
underlying process λt. The THR model can then be

Algorithm 2 MSM particle smoother

Draw k(i) ∼ Γ−1(αk, βk)

Draw λ
(i)
0 ∼ N (0, k(i)), u

(i)
0 ∈ {0, 1}, r(i)0 ∼ N (0, 1)

for t = 1 : tCA do
for τ = t : min(t+ L, tCA) do

Draw λ(i)
τ ∼ N (λ

(i)
τ−1, k

(i))

Draw u(i)
τ ∼ MarkovChain(u | u(i)

τ−1)

Draw r(i)τ ∼ N (α
u
(i)
τ
, exp (λ(i)

τ ))

w(i)
τ ∝ exp( 1

2 (yτ − βr(i)τ )>Σ−1(yτ − βr(i)τ ))
end for
for τ = min(t+ L, tCA) : t do

w
(i)
τ−1 ∝ w

(i)
τ p(r(i)τ |r

(i)
τ−1, u

(i)
τ , λ(i)

τ )p(u(i)
τ |u

(i)
τ−1)p(λ(i)

τ |λ
(i)
τ−1)

end for
ût =

∑
w

(i)
t u

(i)
t

r̂t =
∑
w

(i)
t r

(i)
t

end for

written as:

λt = λt−1 + δt δt ∼N(0, k2)

rt = rt−1 + εt εt ∼N(0, exp (λt))

yt = βrt + ηt ηt ∼N(0,Σ)

Σ = diag(σ2
1 , σ

2
2 · · · , σ2

f )

Figure 4 shows the graphical representation of the pro-
posed model.

· · · λt−1 λt λt+1 ...

· · · rt−1 rt rt+1 ...

· · · yt−1 yt yt+1 ...

Figure 4: The graphical representation of DY-
NACARE threshold Model (THR).

For THR, cardiac arrest is defined as the point where
the risk trajectory rt exceeds a certain value θ. Fur-
thermore, the model assumes that the risk trajectory is
monotonically increasing in a time period (L) before
cardiac arrest. We impose the following restrictions
on rt during the semi-supervised backward smoothing



     337

Joyce C. Ho1, Yubin Park1, Carlos M. Carvalho2, Joydeep Ghosh1

stage of our algorithm:

rt ≥ θ ∀t ≥tCA (5)

rt ≥ rt−1 ∀t ≥tCA − L

The EM algorithm to estimate the THR parameters
β,Σ is the same as in the MSM model (Equation 3).
Additionally, the particle smoother for THR has an
analogous form to the MSM particle smoother. The
main difference between the two models lies in the in-
corporation of the partial knowledge about the cardiac
arrest event. THR enforces Equation 5 through: (i) a

penalty on the particle weights, and (ii) sampling r
(i)
t

from a truncated normal distribution to bound r
(i)
t

such that r
(i)
t−1 ≤ r

(i)
t when t ≥ tCA − L. The penalty

factor, ρ � 1, decreases the weight of particles that
violate Equation 5.

w̃
(i)
tCA

=

{
w

(i)
tCA

r(i) ≥ θ
ρw

(i)
tCA

otherwise

The procedure for THR particle smoothing is detailed
in Algorithm 3.

Algorithm 3 THR particle smoother

Draw k(i) ∼ Γ−1(αk, βk)

Initialize λ
(i)
0 ∼ N (0, k(i)), r

(i)
0 ∼ N (0, 1)

for t = 1 : tCA do
for τ = t : min(t+ L, tCA) do

Draw λ(i)
τ ∼ N (λ

(i)
τ−1, k

(i))

Draw r(i)τ ∼
{
N (r(i)τ , exp (λ(i)

τ )), τ < T − L
T N (r(i)τ , exp (λ(i)

τ ), r(i)τ ,∞), τ ≥ T − L
w(i)
τ ∝ exp( 1

2 (yτ − βr(i)τ )>Σ−1(yτ − βr(i)τ ))

if r(i)τ < θandτ = tCA then

w̃(i)
τ = ρw(i)

τ
else
w̃(i)
τ = w(i)

τ
end if
w(i)
τ = w̃(i)

τ
end for
for τ = min(t+ L, tCA) : t do

w
(i)
τ−1 ∝ w

(i)
τ p(r(i)τ |r

(i)
τ−1, λ

(i)
τ )p(λ(i)

τ |λ
(i)
τ−1)

end for
r̂t =

∑
w

(i)
t r

(i)
t

end for

3 DYNACARE Benefits

DYNACARE learns an individual patient’s model pa-
rameters and estimates the cardiac arrest trajectory.
In addition, it can model a new patient, deliver in-
stantaneous results for a large patient population via
distributed computing, and provide a personalized dy-
namic hazard function.

3.1 Algorithm Parallelization

The DYNACARE algorithm estimates the model pa-
rameters and cardiac arrest trajectory for each patient.

 
DB

Patient 1 Patient N
...

DYNACARE DYNACARE

 
Model Param. DYNACARE

...
New Patient

Figure 5: Diagram of the implemented distributed
DYNACARE system. DYNACARE is embarrassingly
parallelizable.

Consequently, the computation is distributed across
multiple machines; each system tasked with learning
an individual’s parameters and CAT. A database is
then used to store all the learned patient parameters to
model new patients with insufficient number of obser-
vations. Furthermore, the particle smoother itself can
be parallelized using a MapReduce framework. The
“map” function takes the current risk, propagates it
forward and calculates the weight based on the distri-
bution. The “reduce” function renormalizes and re-
samples the new particle weights. Figure 5 illustrates
the distributed systems diagram for DYNACARE.

3.2 Survival Analysis

Survival analysis defines a hazard function
(h(t)), the instantaneous rate of failure at
time t conditioned on survival up to t, as
h(t)dt = p(t < tevent < t+ dt|tevent ≥ t). The Cox
proportional hazard model (Cox, 1972) is a popular
semi-nonparametric model. Classical hazard models
can not be used for this problem as the cardiac
arrest event time cannot be aligned across patients,
violating a major assumption of survival analysis.
However, we will show that DYNACARE dynamically
tracks the current state of the patient and provides a
personalized dynamic hazard function h(t).

The DYNACARE models assume the cardiac arrest
trajectory is a wide-sense stationary random process.
Without loss of generality, E[rt] = 0 and E[λt] = 0.
For a new patient without any observations, MSM as-
signs the probability of experiencing a cardiac arrest
at time t as πc. After observing a sequence of mea-
surements ∆y1:t, the model estimates ût|∆y1:t. Thus
the probability of a cardiac arrest event at time t is the
transition probability from ût to sc, providing a per-
sonalized hazard function that varies over time and
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patient history.

hMSM (t) = p(ût = sc|∆y1:t)

THR assigns the probability of a cardiac arrest
event in the next time period for a new patient as
hTHR(t) = p(εt > θ), εt ∼ N(0, 1). As the model ob-
serves the patient’s information y1:t, the new hazard
function takes a dynamic form.

hTHR(t) = p(r̂t + εt > θ | y1:t) = p(εt > θ − r̂t | y1:t)

=

∫ ∞
θ−r̂t

1√
2π

exp (−x
2

2
)dx = 1−Φ(θ − r̂t)

Φ represents the cumulative normal distribution in the
equation above.

4 Experiment

4.1 Data

The study was conducted on adults (18+ years of age
at time of admission) from the MIMIC-II database
who had an asystole event. We focused on five mea-
surement types: heart rate, respiratory rate, body
temperature, diastolic blood pressure and systolic
blood pressure. Data prior to cardiac arrest time was
discretized into 4-hour bins starting when a patient
has at least one observation per measurement. Addi-
tionally, we required each patient to have at least 40
discrete time slices (∼ 6.5 days) to ensure sufficient
data points.
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Figure 6: Boxplot summarizing the number of no mea-
surement time slices per variable.

From 27,542 adult hospital admissions, there were 421
cardiac arrest patients with asystole. However only
108 of these patients met the minimum data require-
ments. On average, patients had 76 time slices with
a standard deviation of 22. We assumed unobserved
measurements denote the patient’s status quo and em-
ployed the zero-order hold (Fialho et al., 2010), main-
taining the last observed value. Figure 6 displays the
number of missing observations for each measurement
type per patient. Heart rate, diastolic blood pressure

and systolic blood pressure were generally observed at
every time slice. On the other hand, temperature mea-
surements were not regularly measured every 4 hours.
Figure 7 shows a plot of the last 100 time periods prior
to cardiac arrest for a patient.
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Figure 7: An example of a patient’s normalized phys-
iological measurements prior to cardiac arrest.

4.2 Evaluation Measure

Learned model parameters are utilized to estimate the
risk of a new patient. An exploratory analysis of the
learned parameter distribution showed an underlying
hierarchical structure, which is illustrated in Figure 8.
Model parameters are drawn from stratified learned-
parameter samples based on a patient’s age and gen-
der, which we refer to as stratified bootstrapping (SB).
Stratified bootstrapping is used as a computationally
efficient alternative to modeling the hierarchical struc-
ture directly. Table 2 shows the number of patients per
subgroup, or stratum.
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Figure 8: The distribution of beta parameters based
on a patient’s age group and gender. Each stratum
exhibits a different mean and variance of the estimated
parameters.

The predictive performance of the DYNACARE mod-
els, an unsupervised simple dynamic linear model, and
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Table 2: Number of patients per strata

Age under 80 Age over 80
Female 23 19
Male 49 17
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Figure 9: The estimated CAT based on a single pa-
tient’s observations for both DYNACARE models.

a standard logistic regression model were evaluated on
the 20 time periods prior to cardiac arrest. Leave-one-
out cross validation was used; each patient trained on
the remaining 107 patients. For the “new patient”,
stratified bootstrapping was used to draw β and then
‘unsupervised” particle smoothing was used to esti-
mate the risk trajectory. No cardiac arrest information
was provided to the unsupervised particle smoother.
Algorithm 4 outlines the general algorithm for esti-
mating CAT for a new patient.

Algorithm 4 DYNACARE estimation algorithm
Find stratum with matching patient age and gender

Draw β(i) from stratum of learned parameters

Estimate r
(i)
1:T using β(i)

Compute r̂1:T = Ei[r
(i)|β(i)]

4.3 Results

Figure 9 demonstrates the estimated risk trajectory
from MSM and THR based on a patient’s sequence of
observations. The patient-specific model parameters
were learned using the general DYNACARE algorithm
(Algorithm 1). These parameters were then used to es-
timate the patient’s CAT using an unsupervised parti-
cle smoother. Patients generally had similar estimated
CAT to the one shown in Figure 9 even when the ob-
servations did not exhibit the same temporal patterns.
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Figure 10: The empirical distribution of parameter
values (β̂) for the DYNACARE models.
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Figure 11: The CAT on the last 20 time periods for the
DYNACARE models using either individually learned
or stratified bootstrapping β parameters. Cardiac ar-
rest occurs within 4 hours after index 20.

DYNACARE models is shown in Figure 10. Both
models have approximately the same mean parameter
value for heart rate, respiratory rate, and temperature.
MSM parameters have smaller variance. The THR co-
efficients for blood pressure (diastolic and systolic) are
slightly more negative in comparison to their MSM
counterparts. This suggests that THR places more
weight on the value of these measurements, searching
for a downward trend of the blood pressure values.

Differences in the estimated CAT using the “true”
learned parameter values and the stratified bootstrap-
ping parameters can be seen in Figure 11. The esti-
mated trajectory for MSM using individually learned
parameters is actually more noisy than stratified boot-
strapping. However, the opposite occurs for the THR
which has less variability for “true” parameter values.
The disparity maybe a manifestation of the larger vari-
ance in the THR parameter distributions shown in Fig-
ure 10.

To create a fair comparison of the DYNACARE mod-
els, an unsupervised simple dynamic linear model
(DLM), and a standard logistic regression model
trained only on the current observations, additional lo-
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Figure 12: A boxplot of the predictive scores for cardiac arrest. Class 1 represents the time indices right before
the cardiac arrest event and class 0 for the remaining time periods. Ensemble scores are computed using a convex
combination.
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Figure 13: The area under the Receiver Operating
Characteristic curve (AUROC) for the simple dynamic
linear model, standard logistic model and an ensemble
of logistic with the DYNACARE models.

gistic regression models were trained for DLM, MSM,
and THR to produce a probability of cardiac arrest
based on the risk trajectory value. Figure 12 and
Figure 13 illustrate the predictive performance of the
models. MSM performs the best of the four mod-
els followed by THR. The standard logistic regression
model results in a higher number of false positives
while the simple DLM performs the worst. Figure 12
also demonstrates an improvement using an ensemble
approach of the DYNA-CARE models. However, the
ensemble of all three models yields the best predictive
performance.

5 Discussion

DYNACARE provides a general methodology for an-
alyzing several types of complex temporal data. The
semi-supervised framework allows latent factors to be
related to a rare event. Consequently, DYNACARE
offers interpretability of the latent factor as well as

the predictability of the cardiac arrest event.

The DYNACARE models produce a cardiac arrest tra-
jectory with predictive capability that can be easily
visualized and interpreted by a medical professional.
The general DYNACARE algorithm allows the model
to continuously track a patient’s trajectory in real-time
using a distributed system. Moreover, the model stores
the learned parameters to estimate the risk trajectory
for a new patient with limited observations. Further-
more, DYNACARE provides a personalized dynamic
hazard function, which cannot be obtained using tra-
ditional survival analysis.

This paper introduced two novel dynamic models to
estimate a patient’s risk of cardiac arrest. The DY-
NACARE algorithm can be extended to utilize sequen-
tial learning of the model parameters. Additionally,
DYNACARE models can be augmented to encompass
different types of data (categorical or binomial data)
and incorporate other features such as additional phys-
iological measurements, laboratory test results, drug
dosages, and nurse’s notes. Based on the improved
performance of the ensemble of MSM, THR, and lo-
gistic regression, future work can focus on creating a
single model that combines the models simultaneously.
Finally, a general framework can be developed to ad-
dress other maladies (e.g. pneumonia, sepsis, or heart
attacks).

In conclusion, we demonstrated the potential of using
dynamic models to estimate a patient’s risk of car-
diac arrest. The results show promise in their ability
to accurately identify patients at risk of cardiac ar-
rest, potentially improving the survival rate of ICU
patients.
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