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Abstract

Tensor factorization is a methodology that is applied
in a variety of fields, ranging from climate modeling to
medical informatics. A tensor is an n-way array that
captures the relationship between n objects. These mul-
tiway arrays can be factored to study the underlying
bases present in the data. Two challenges arising in
tensor factorization are 1) the resulting factors can be
noisy and highly overlapping with one another and 2)
they may not map to insights within a domain. How-
ever, incorporating supervision to increase the num-
ber of insightful factors can be costly in terms of the
time and domain expertise necessary for gathering la-
bels or domain-specific constraints. To meet these chal-
lenges, we introduce CANDECOMP/PARAFAC (CP)
tensor factorization with Cannot-Link Intermode Con-
straints (CP-CLIC), a framework that achieves succinct,
diverse, interpretable factors. This is accomplished by
gradually learning constraints that are verified with
auxiliary information during the decomposition process.
We demonstrate CP-CLIC’s potential to extract sparse,
diverse, and interpretable factors through experiments
on simulated data and a real-world application in med-
ical informatics.

1 Introduction

As many researchers will attest to, applying machine
learning to domain-specific problems to extract inter-
pretable and actionable insights is a challenging en-
deavor. Consider, unsupervised methods can lead to
learned models that lack validity. Supervised and semi-
supervised methods, by contrast, often lead to models
that inform domain experts more about what they al-
ready know, leading to minor contributions in knowl-
edge discovery, if any. Moreover, creating the gold-
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standard labels, as well as the guidance necessary to
orient the learning process, is often quite costly in terms
of domain expert labor and time.

However, there are many sources of publicly avail-
able information (e.g., census data, online journals, and
forums) that can serve as weak proxies for domain ex-
pertise. In this paper, we introduce an approach for ex-
tracting domain-specific constraints during the learning
process and validating their ability to serve as proxies.
Without a priori knowledge of the supervision, we show
how candidate constraints can be gradually discovered
and accepted (or rejected) during the learning process.

We engineer this process specifically for a tensor
decomposition learning situation. Tensor factorization
is a class of data-driven approaches for discovering
interesting patterns that has been widely applied in
many application domains. Tensors are ideal for suc-
cinctly capturing multidimensional relationships inher-
ent in the world [1]. Take for example data from elec-
tronic health records (EHR), our primary motivation.
A 3-dimensional (or 3-mode) tensor can store the num-
ber of times a patient was prescribed a medication and
given a diagnosis in a specified window of time, thereby
encapsulating the relationship between patients, diag-
noses, and medications. The most popular tensor anal-
ysis method, CANDECOMP/PARAFAC (CP) factor-
ization [2] decomposes a tensor into a sum of rank-one
components that represent the latent concepts (see the
top lefthand corner in Figure 1 for an illustration). The
intuitive output structure and uniqueness property of
this factorization make the factors easy to interpret and
useful for real-world applications [1]. For example, the
CP factorization of EHR tensors can help researchers
identify patients for various studies [3, 4, 5].

However, CP factorization has several challenges.
First, the low-dimensional components can be highly
correlated with each another and consist of many over-
lapping elements [6]. Lack of diversity between compo-
nents makes them harder to interpret as a whole and
less useful in real-world applications. Second, there can
be noise within and between the modes (i.e., elements
appear together that do not belong together). In the
medical domain, this noise could manifest as a medica-
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tion and diagnosis co-occurring in a component where
the pairing does not make clinical sense. Some ten-
sor decomposition methods have relied upon supervi-
sion or domain expertise to increase the number of in-
terpretable components [7, 8, 9, 10], but incorporating
supervision can be challenging and costly in terms of
the time and expertise necessary for gathering domain-
specific constraints. Yet, proxies for domain-expertise
can be gathered from many sources, and harnessing this
information can improve tensor decomposition methods.

To increase the meaningfulness of the tensor fac-
torization results, we introduce CP decomposition with
Cannot-Link Intermode Constraints (CP-CLIC), a ten-
sor decomposition model that gradually builds cannot-
link constraints between different modes during the de-
composition process and refines these constraints using
domain expertise via auxiliary information. Using com-
putational phenotyping as an example, we show that
CP-CLIC achieves sparser, more cohesive components
compared to state-of-the-art baseline models. The con-
tributions of this work can be summarized as follows:

• Flexible, automated guidance framework:
We introduce adaptive, cannot-link constraints
that use auxiliary information to refine the guid-
ance information.

• Generalized constraint framework: Our learn-
ing algorithm generalizes to many data types and
can incorporate guidance information, as well as a
variety of constraints including non-negativity, sim-
plex, and angular, to uncover sparse and diverse
factors on a large-sized tensor.

• Real-world case and simulated study: We
present a case study of CP-CLIC on computa-
tional phenotyping. We show that the CP-CLIC-
discovered phenotypes are sparse, diverse, and clin-
ically interesting. Additionally, using data simu-
lated from multiple distributions, we demonstrate
CP-CLIC can recover components accurately.

2 Background and Motivation

2.1 Mathematical Preliminaries We use bold-
faced lowercase letters to indicate vectors (e.g., a), bold-
faced uppercase letters to indicate matrices (e.g., A),
and bold-faced script letters to indicate tensors with
dimension greater than two (e.g., X where x~i is the

tensor element with index ~i). The nth matrix in a se-
ries of matrices is denoted with a superscript integer in
parentheses (e.g., A(n)). Often tensors are unfolded or
matricized along the nth mode during the decomposi-
tion process, which is denoted X(n) (for more details
see [1]).

Definition 2.1. The Khatri-Rao product of two real-
valued matrices A � B of sizes IA × R and IB × R
respectively, produces a matrix Z of size IAIB × R
such that Z =

[
a1 ⊗ b1 · · · aR ⊗ bR

]
, where ⊗ is

the Kronecker product. The element-wise multiplication
(and division) of two same-sized matrices A∗B (A�B)
produces a matrix Z of the same size such that the
element c~i = a~ib~i (c~i = a~i/b~i) for all ~i.

Definition 2.2. X ∈ RI1×I2×...IN is an N -way rank
one tensor if it can be expressed as the outer product of
N vectors, a(1) ◦ a(2) ◦ · · · ◦ a(N), where each element

x~i = xi1,i2,··· ,iN = a
(1)
i1
a
(2)
i2
· · · a(N)

iN
.

2.2 CP Tensor Decomposition CP decomposition
[2] approximates the original tensor X with a model
tensor Z, which can be expressed as a sum of R rank-
one tensors,

X ≈ Z =

R∑
r=1

λra
(1)
r ◦ . . . ◦ a(N)

r = Jλ; A(1); . . . ; A(N)K.

The latter representation is shorthand notation with
the weight vector λ = [λ1 · · ·λR] and the factor matrix

A(n) = [a
(n)
1 · · ·a

(n)
R ], where we refer to the a

(n)
r as the

rth factor vector of A(n). Each column, a
(n)
r , of the A(n)

matrices is normalized and the length is represented as
the scalar λr.

1

Fitting a CP decomposition involves minimizing an
objective function between the tensor X and a model
tensor Z. The objective function is usually chosen
based on assumptions about the underlying distribution
of the data. Least squares approximation (CP-ALS),
the most popular formulation, assumes a Gaussian
distribution and is well-suited for continuous data [1].
For count data, it may be more appropriate to use
nonnegative CP alternating Poisson regression (CP-
APR) [11], wherein the objective is to minimize the
KL divergence (i.e., data follows Poisson distribution).
The least squares approximation and KL divergence are
both examples of Bregman divergences, a generalized
measure of distance [12].

2.3 Related Work

Constrained Tensor Decomposition Methods
Some CP tensor decomposition methods have included
constraints in their fitting processes with the goal of
tailoring the results to the needs of the applications in
question. Carroll et al. [7] used domain knowledge to
put linear constraints on the factor matrices. Peng [13]

1It is common practice to find R through a grid search.
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incorporated cannot-link and must-link constraints into
a non-negative tensor factorization but only put the con-
straints on individual factor matrices and did not put
constraints between the factor matrices. In the clinical
domain, Wang et al. [8] incorporated constraints into
their objective function in the form of guidance factor
matrices that are constructed using clinical knowledge.
Their guidance only functions within modes and not be-
tween modes, and it requires domain expertise, which
may not always be available. Kim et al. [14] proposed
a supervised tensor factorization method that uses a
user-supplied similarity matrix to encourage elements
of components within a mode to be similar.

Few tensor factorization methods incorporate
between-mode constraints even in the non-medical do-
main. Davidson et al. [9] used intermode constraints
in supervised and semi-supervised ways to discover net-
work structure in spatio-temporal fMRI datasets. How-
ever, construction of their intermode constraints re-
quired domain expertise. Narita et al. [10] used within-
mode and between-mode regularization terms to con-
strain similar objects to have similar factors in 3-
mode tensors. This method requires between-mode con-
straints on all of the modes, whereas CP-CLIC can be
applied to subsets of modes and is therefore flexible and
adaptable to a variety of different situations. Addition-
ally, for three modes, Narita et al. [10]’s method requires
the formation of an I1I2I3 × I1I2I3 matrix.

Computational Phenotyping via Tensor Factor-
ization Using CP decomposition to derive computa-
tional phenotypes has gained in popularity over the past
few years [15]. A computational phenotype is a set of
clinical characteristics that define a condition of interest
and is often derived from EHRs [5]. Examples of compu-
tational phenotypes are shown in Figure 2. In a CP de-
composition, each rank-one component depicted in Fig-
ure 1 can be interpreted as a phenotype. The nonzero
elements (i.e., the orange, green, and purple squares)
in each factor vector of each component make up the
phenotype. Ho et al. [16] showed tensor decomposition
could be applied to tensors constructed from count data
extracted from EHRs to derive phenotypes, a large num-
ber of which were clinically relevant. Subsequent mod-
els have been developed with the goal of deriving sparse,
diverse, and interpretable phenotypes [17, 8, 14]. Hen-
derson et al. [6] introduced a CP decomposition model
called Granite with angular constraints to encourage di-
versity and sparsity constraints to derive succinct phe-
notypes. However, we observed in our experiments that
tensor decompositions could result in noisy interactions
across modes (e.g., medications and diagnoses appeared
together that did not belong together).

3 Methods and Technical Solutions

Unlike existing constrained tensor decomposition mod-
els, CP-CLIC gradually learns constraints about in-
termode relationships within tensors and refines these
constraints using auxiliary information. Automatically
discovering the relevant constraints reduces the up-
front guidance costs associated with domain experts and
guards against overfitting to existing domain knowledge.
Moreover, it allows the decomposition to discover the
multiway relationships in a data-driven fashion. Fur-
thermore, users can encode their uncertainty in the aux-
iliary information without necessitating domain expert
supervision throughout the entire process. CP-CLIC
is formulated to accommodate a large family of objec-
tive functions that work in concert with sparsity- and
diversity-encouraging constraints to derive meaningful
components.

The objective function is formulated as follows. Let
X denote an I1 × I2 × · · · × IN tensor and Z represent
a same-sized tensor where each element z~i contains the
optimal parameters of the observed tensor x~i. The full
objective function of CP-CLIC is as follows:

f(X ) = minL(Z|X )(3.1)

+ β1

N∑
n=1

n−1∑
m=1

Tr(A(m)ᵀM(m,n)A(n))(3.2)

+
β2
2

N∑
n=1

R∑
r=1

r∑
p=1

max(0,
(a

(n)
p )ᵀa

(n)
r

||a(n)
p ||2||a(n)

r ||2
− θn)2(3.3)

+
β3
2

N∑
n=1

R∑
r=1

‖a(n)
r ‖22(3.4)

s.t Z = Jλ; A(1); · · · ; A(N)K(3.5)

λr ≥ 0, ∀r; A(n) ∈ [0, 1]In×R, θn ∈ [0, 1] ∀n
||a(n)

r ||1 = 1, ∀n(3.6)

The parameters z~i can be determined by minimizing
the negative log-likelihood of the observed x~i and model
the parameters z~i (see Equation 3.1). We augment the
Equation 3.1 with constraints to encourage rank-one
components that are sparse, diverse, and meaningful.

3.1 Bregman Divergence While least squares is
commonly used to fit the CP decomposition, it is not
well-suited for all types of data. A large number of other
useful loss functions such as KL divergence, logistic loss,
and Itakura-Saito distance may be more appropriate for
count data or binomial data. As such, we propose the
generalization of the loss, L(Z|X ) in Equation 3.1, in
terms of the Bregman divergence. Bregman divergences
encompass a broad range of useful loss functions, with
common ones listed in Table 1.
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Figure 1: A cartoon illustration of the CP-CLIC process. The outlined items represent an action being taken, while
text above arrows represents data moving through the constraint matrix-building process. Starting in the upper
lefthand corner, after an epoch of the CP-CLIC SGD fitting process is complete, CP-CLIC finds the elements in
modes 2 and 3 of each component that have probabilities below a predetermined threshold. These (mode 2, mode
3) pairs are valued as a 1 in the cannot-link matrix. The pairs are evaluated using auxiliary information. If the
auxiliary information finds there is a relationship, these pairs are removed from the cannot-link matrix.

Table 1: Bergman divergence loss functions and gradients where A(−n) ≡ A(N)�· · ·�A(n+1)�A(n−1)�· · ·�A(1).

Bregman Divergence Negative Log-Likelihood Matricized Gradient (i.e., ∂L(Z|X )

∂A(n) )

Mean-squared 1
2
(x~i − z~i)

2 (Z(n) −X(n))A
(−n)

Exponential x~iz~i − log z~i (X(n) − 1� Z(n))A
(−n)

Poisson z~i − x~i log z~i (1−X(n) � Z(n))A
(−n)

Boolean log(z~i + 1)− x~i log z~i (1� (Z(n) + 1)−X(n) � Z(n))A
(−n)

3.2 Constraints

Stochastic Constraints The column stochastic con-
straints (Equation 3.6) allow each non-zero element to
be interpreted as a conditional probability given the
component (e.g., phenotype and mode). A high (close
to 1) value indicates a strong relationship for this ele-
ment in the component. Alternatively, a low probability
(close to 0) represents a weak relationship.

Cannot-link Constraints The cannot-link con-
straints, expressed in Equation 3.2, are motivated by
the probabilistic interpretation of the components.
During the fitting process, CP-CLIC identifies the
elements with low probabilities in each mode in each
component (i.e., probabilities less than α) and discour-

ages them from appearing together in the component
through the penalty imposed by Equation 3.2. In
Equation 3.2, M(m,n) ∈ 1Im×In is a binary cannot-link
matrix between modes m and n, defined as follows:

M
(m,n)
jk =

{
1, if a

(m)
jr < α and a

(n)
kr < α for any r

0, otherwise

The terms in Equation 3.2 are of the form,

a
(m)
jr M

(m,n)
jk a

(n)
kr , and only contribute to the objective

function if the jth object in mode m and the kth object
in mode n appear in at least one of the R components.
This constraint may also encourage sparsity in the num-
ber of elements per component since it is penalizing the
smaller elements of the factors. We set α to be an ex-
ponential loss function of k, the number of non-zeros
per factor, and the epoch l. If all elements have equal
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probability (i.e., the are equally uninformative), they
will have probability 1/k. However, we exponentially
increase α to 1/k over the epochs in order to be more
aggressive as the fit continues.We describe how to refine
M(m,n) in Section 3.4.

Sparsity and Diversity Constraints We follow Hen-
derson et al. [6] and incorporate Equations 3.3 and 3.4,
which are used to encourage diversity of the components
through an angular penalty on the vectors within each
factor matrix, and to control the size of the λ weights
that are fit, respectively. Equation 3.3 calculates the co-
sine similarity between each pair of factor vectors in a
mode and adds to the penalty if the similarity is greater
than θn. A smaller θn encourages factor vectors to be
orthogonal to one another whereas a larger θn allows
for more overlap between factor vectors. To encourage
sparse solutions, we project the largest k terms in each
factor vector onto an `1 ball.

Algorithm 1 CP-CLIC fitting process

1: Randomly initialize Jλ; A(1); A(2) · · · ; A(N)K
2: Sall = ∅; M(m,n) = zeros(Im, In) for each m,n pair
3: for l = 1 : L do
4: Run epoch of SGD with Adam
5: for m,n pairs do
6: S = ∅
7: for r=1:R do
8: # Find low prob. elements

9: Sm = {a(m)
jr < α, 0 ≤ j ≤ Im}

10: Sn = {a(n)
kr < α, 0 ≤ k ≤ In}

11: # Obtain all combos of Sm and Sn

12: S = S ∪ {Sm × Sn}
13: end for
14: Send S to auxiliary tool

15: Slift = {lift(m,n) = P (m∩n)
P (m)P (n) > 1}

16: Sall = Sall ∪ (S − Slift)
17: # Set elements in S equal to 1

18: M
(m,n)
jk = {1 : j, k ∈ Sall}

19: end for
20: Check convergence
21: end for
22: return Jλ; A(1); A(2) · · · ; A(N)K

3.3 Minimizing the objective function We min-
imize the objective function using Stochastic Gradient
Descent (SGD) with Adam [18]. We follow the work
on Generalized CP Decomposition presented by Kolda
et al for the implementation [19]. Using SGD to min-
imize a CP gradient is equivalent to a sparse imple-
mentation of CP decomposition where a subset of data

points are taken to be the non-zero entries. We use
the work of Acar et al. [20] to implement operations on
sparse tensors. After each epoch, CP-CLIC finds the
low probability elements in each component and up-
dates the cannot-link matrix, M(m,n) (outlined in Al-
gorithm 1 and Figure 1).

For the gradient of Equation 3.1, we give several
examples of widely used loss functions in Table 1. We
refer the reader to [6] for the gradients for Equations 3.3
and 3.4. For Equation 3.2, the derivative with respect
to the factor matrix A(m) is:

∂Tr(A(m)ᵀM(m,n)A(n)))

∂A(m)
= M(m,n)A(n)(3.7)

∂Tr(A(m)ᵀM(m,n)A(n)))

∂A(n)
= M(m,n)ᵀA(m)(3.8)

3.4 Incorporating insights from auxiliary infor-
mation One possible drawback of building the cannot-
link matrix in an unsupervised manner is that it is pos-
sible for two elements to have low probability in a com-
ponent but actually have a relationship in the domain
in question. To mitigate the chance of this occurrence,
CP-CLIC uses auxiliary information to accept or reject
the cannot-link constraints. Figure 1 gives a stylized
view of how CP-CLIC incorporates auxiliary informa-
tion. Algorithm 1 specifies how the cannot-link penalty
matrix is built through the fitting process. After each
epoch, CP-CLIC extracts the intermode pairs that have
a probability below a threshold.2 Then, for each pair,
if there is insufficient evidence that the relationship ex-
ists according to auxiliary information, CP-CLIC puts a
1 in the cannot-link matrix for that pair. The updated
cannot-link penalty matrix is then incorporated into the
next epoch of the fitting process.

In practice, auxiliary information could come in
many forms (e.g., online forums). In Section 4 we
show how to incorporate information from a corpus of
medical journals. It may be possible to use the auxiliary
information to build a cannot-link matrix and hard-code
the constraints into M(m,n) from the beginning of the
fit instead of gradually building the cannot-link matrix
as the fit progresses. This approach, which we refer to
as CP-CLIC-1-Shot, may be appropriate in situations
where the user has confidence in the veracity of the
auxiliary information. In other applications, however,
the user might not have as much confidence in the
auxiliary information. Using CP-CLIC-1-Shot in these

2We observed empirically that it required several epochs for
the factors to stabilize. Thus, we adopted a process similar to
burn-in iterations in Markov Main Monte Carlo methods. For a

set of specified epochs, the fit progresses without the cannot-link
matrix.
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applications may introduce noise into the decomposition
and degrade the quality of the fit. Thus, gradually
building the constraints in CP-CLIC may be more
robust to introducing noise in M(m,n) matrix.

4 Empirical Evaluation

4.1 Simulated Data First, we demonstrate that the
CP-CLIC framework is general enough to be used with
different loss functions. We evaluate CP-CLIC’s perfor-
mance against three types of synthetic tensors, where
elements are drawn from a Poisson, Normal, or Expo-
nential distribution, and we compare the performance
to CP-ALS [1], a popular tensor decomposition method
that uses mean-squared loss between the observed ten-
sor and the fit tensor as the objective function. Specifi-
cally, we simulate third-order tensors of size 80×40×40
with a rank of 5 (R = 5). For each vector in the fac-
tor matrix A(n), we sample non-zero element indices
according to a chosen sparsity pattern (20, 12, and 12
non-zero elements in mode 1, 2, and 3, respectively)
and then randomly sample along the simplex for the
non-zero indices, rejecting vectors that are too similar
to those already generated (i.e., their normalized cosine
angle is greater than θn). We draw the model parame-
ters zijk from a uniform distribution. Finally, each ten-
sor element xijk is sampled from a Poisson, Normal, or
Exponential distribution with the parameter set to zijk.
For each tensor type, we simulated 40 tensors and cal-
culated the factor match score with the known vectors
where a value of 1 representing a perfect match [11].

Table 2 shows the factor match scores for fits
with and without β1. In all cases, CP-CLIC improves
the quality of the fit and makes the biggest impact
in the Exponential case. Thus, for common data
types, CP-CLIC can recover the original factors. CP-
ALS’s poor performance on the tensors containing count
and exponential data underscores the importance of
choosing a loss function that aligns with how the data
are generated. Computational phenotyping methods
that use the same loss function as CP-ALS but on
tensors of count data, which we use as baselines in the
next section, may sacrifice quality of fit.

4.2 CP-CLIC in Computational Phenotyping

Dataset Description We constructed a tensor from
a set of de-identified EHRs from the Vanderbilt Uni-
versity Medical Center (VUMC) in Nashville, TN, a
medical system that serves a wide area of the south-
eastern United States through a collection of hospitals,
clinics, and other healthcare facilities. To build the
tensor, we counted the medication and diagnosis in-
teractions that occurred two years before the date of

Table 2: Factor match scores between fitted factor vec-
tors and known factor vectors generated using Poisson,
Normal, and Exponential distributions.

Data Mode CP-ALS CP-CLIC
β1 = 0 β1 = 0.01

Real 1 0.940 0.988 0.991
2 0.921 0.994 0.997
3 0.939 0.995 0.997

Count 1 0.555 0.934 0.977
2 0.629 0.946 0.958
3 0.620 0.946 0.967

Exponential 1 0.121 0.883 0.945
2 0.167 0.894 0.967
3 0.199 0.902 0.963

the patient’s last interaction with the medical center.
The diagnosis codes are from the International Classi-
fication of Diseases - version 9 (ICD-9) system, which
captures detailed information for billing purposes. We
use Phenome-Wide Association Study (PheWAS) cod-
ing to aggregate the diagnosis codes into broader cate-
gories [21]. We group the medication codes into more
general categories using the Medical Subject Headings
(MeSH) pharmacological terms provided by the US Na-
tional Library of Medicine’s RxClass RESTful API.3

Aggregating the codes allows for larger trends to emerge
in the components and makes it possible for future use
in various types of association investigations, such as
genomic studies. These groupings resulted in a tensor
with the following dimensions: 1622 patients (mode 1)
by 1325 diagnoses (mode 2) by 148 medications (mode
3). Within the set of patients, domain experts previ-
ously identified 304 as resistant hypertension case pa-
tients and 399 control patients.

Since the EHR tensor contains counts, we use KL-
divergence for L(Z|X ). For feasibility and numerical
stability, we augment the R components with a rank-
one bias tensor, a strictly positive rank-one tensor. We
refer the reader to [17] for details. Parameter values
for CP-CLIC variants and Granite were chosen using
a grid search and the KL-divergence as a measure of
performance. The grid search was over the following
ranges: R = [20, 50], β1 = [.01, 100], β2 = [0, 10],
β3 = [.0001, 10], θn = [.15, 1], for n = {1, 2}, θ1 = 1.

Incorporating auxiliary information in practice
We use a tool called Phenotype Instance Verification
and Evaluation Tool (PIVET) to evaluate the cannot-
link constraints [22]. When phenotypes have been

3https://rxnav.nlm.nih.gov/RxClassAPIs.html
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Table 3: Mean cosine similarity and average number of non-zeros the factor vectors in each mode (X means
β2 > 0, 0 ≤ θn ≤ 1 to encourage diversity).

Method Diversity Cosine Similarity Number of Non-zeros
Penalty Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

CP-APR 0.00 (0.00) 0.22 (0.00) 0.18 (0.00) 22.62 (1.00) 42.21 (1.14) 21.86 (0.23)
Rubik 0.02 (0.01) 0.05 (0.01) 0.14 (0.01) 7.48 (2.73) 26.65 (4.01) 15.19 (2.16)
DDP 0.03 (0.00) 0.07 (0.00) 0.11 (0.00) 77.79 (5.28) 44.01 (1.99) 17.01 (0.53)
GraniteSGD 0.31 (0.01) 0.06 (0.01) 0.13 (0.01) 73.26 (1.03) 13.07 (0.65) 10.85 (0.54)
GraniteSGD X 0.18 (0.01) 0.02 (0.01) 0.12 (0.01) 70.45 (1.69) 18.21 (1.06) 12.31 (0.31)
CP-CLIC-
1-shot 0.19 (0.02) 0.04 (0.02) 0.08 (0.02) 57.87 (3.67) 10.14 (0.28) 8.91 (0.12)
CP-CLIC-
1-Shot X 0.17 (0.02) 0.01 (0.02) 0.09 (0.02) 64.75 (5.73) 9.55 (0.21) 8.61 (0.21)
CP-CLIC,
no pruning

0.31 (0.02) 0.06 (0.02) 0.12 (0.02) 71.63 (1.68) 13.53 (0.70) 11.28 (0.39)

CP-CLIC,
no pruning

X 0.24 (0.02) 0.03 (0.02) 0.14 (0.02) 72.29 (1.85) 16.65 (1.04) 11.79 (0.31)

CP-CLIC 0.32 (0.01) 0.05 (0.01) 0.11 (0.01) 66.83 (0.91) 11.87 (0.93) 9.51 (0.55)
CP-CLIC X 0.28 (0.02) 0.03 (0.02) 0.14 (0.02) 69.09 (0.99) 16.73 (0.49) 10.37 (0.37)

derived through automatic machine learning methods, it
is necessary to verify that they map to clinically relevant
concepts. This task is usually performed by domain
experts who volunteer their time to annotate the clinical
validity of sets of phenotypes. The annotation task can
sometimes lead to ambiguity and experts may disagree
about the clinical relevance of a set of phenotypic
characteristics [22]. PIVET was developed to aid in
the phenotype verification task. PIVET analyzes an
openly available medical journal article corpus to build
evidence sets for the clinical relevance of provided
phenotypes. The analysis is built on the concept of
lift [23], where the lift between objects m and n is

defined as lift(m,n) = P (m∩n)
P (m)P (n) . A lift value of greater

than one suggests that the objects co-occur often. We
use lift as calculated by PIVET to prune lists of possible
cannot-link pairs of diagnoses and medications.

Computational Phenotyping Results We evalu-
ate CP-CLIC quantitatively and qualitatively to de-
termine their utility to clinicians. First, we compare
features of decompositions of three variations of CP-
CLIC (i.e., CP-CLIC, CP-CLIC-1-Shot, and CP-CLIC
without PIVET) with four baselines: Granite (fit using
SGD), CP-APR, Rubik [8], and DDP, which refers to
the model presented by Kim et al [14].4 Second, we eval-

4For Rubik’s guidance matrix, we set three non-zero elements,

one in each of the first three factor vectors in the diagnosis mode
corresponding to essential hypertension, primary pulmonary hy-
pertension, and hypertension. For DDP’s similarity matrix, we

constructed a similarity matrix for the diagnosis mode for DDP
using embeddings provided by [24].

uate each method’s ability to discriminate between case
and control patients. Third, we qualitatively analyze a
subset of phenotypes extracted using CP-CLIC-1-Shot
and Granite in a case study. We show results for the fits
resulting from the parameter values of R = 30, θ1 = 1,
θ2 = .45, θ3 = .75, β1 = .01, β2 = {0, 10},5 β3 = .001,
and a burn-in of 5 epochs.

Table 3 shows the average cosine similarity between
the factor vectors in each mode and the average num-
ber of non-zeros per mode. CP-CLIC finds diverse fac-
tors with respect to the tensor. For this particular ten-
sor, experiments showed the diversity penalty could be
strict for the diagnosis mode because there were many
diagnoses (θ2 = .45), but the relatively few medications
benefited from a more lax diversity penalty (θ3 = .75).
All CP-CLIC variations produce diagnosis and medi-
cation modes that are comparably diverse to those de-
rived through GraniteSGD. Table 3 shows the diagno-
sis mode is quite diverse and there is more overlap in
the medication mode.6 Rubik, which has orthogonality
constraints, had comparable diversity to Granite and
CP-CLIC in modes 2 and 3, but had a much more di-
verse patient mode (mode 1), which may stem from the
fact that there were so few patients in each component.
CP-CLIC’s patient vectors have more in common with
each other (i.e., higher cosine similarity scores) indicat-

5β2 = 0 corresponds to the case where there is no diversity

enforced
6We do not put a diversity penalty on the patient mode in

this application. This decision is motivated by the idea that

patients should be allowed to belong to any phenotype that fits
their observations.
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Figure 2: Two phenotypes, one derived using CP-CLIC-one-shot (left) and one using Granite (right) where both
methods were initialized with the same factor vetors.

Table 4: AUC for predicting resistant hypertension case
patients.

Method AUC (st. dev.)

Rubik 0.5398 (0.03)
DDP 0.6466 (0.12)
Granite 0.6545 (0.08)
CP-CLIC-1-shot 0.7015 (0.10)
CP-CLIC 0.6755 (0.09)

ing that similar groups of patients belong to the same
phenotypes overall.

In terms of sparsity (Table 3), the unconstrained
method CP-APR has on average the most non-zero
elements in the factor vectors of mode 3 (medication)
with 21.86 elements. In mode 2 (diagnosis), DDP has
the largest number non-zero elements in each factor
vector with an average of 44.01 elements. Overall, in
the diagnosis and medication modes, CP-CLIC-1-Shot
model has sparsest factors with an average of 9.55 and
8.61 nonzero elements per factor vector, respectively,
followed by CP-CLIC. Sparse components are generally
easier for clinicians to interpret and utilize.

Additionally, we evaluated the discriminative capa-
bilities of CP-CLIC on a prediction task where the pa-
tient factor matrix served as the feature matrix. We
compared the performance of CP-CLIC, CP-CLIC-1-
shot, Granite, Rubik, and DDP using logistic regression
to predict which patients were resistant hypertension
cases. The model was run with 5-fold cross validation
with 80-20 train-test splits, and the optimal LASSO pa-
rameter for the model was learned using 10-fold cross-
validation on a holdout set. Table 4 shows the area un-
der the receiver operator characteristic curve (AUC) for
the task. The patient factor matrix derived using CP-
CLIC-1-shot resulted in the most discriminative model.
Both Rubik and DDP performed quite poorly, and this
may be related to the diverse patient mode (Table 3).

To evaluate the effect of the cannot-link matrix M
on the decomposition process we initialized CP-CLIC-
1-shot and Granite fits with the same factors and then

examined the differences between the fitted factors. For
the sake of brevity, Figure 2 shows only one pheno-
type from each method initialized from the same factors.
Two clinicians reviewed the two phenotypes in Figure 2
and concluded the CP-CLIC-1-Shot phenotype aligns
with their definition of a typical cardiovascular patient.
While a patient with the CP-CLIC-1-Shot phenotype
may have the same comorbidities as the Granite phe-
notype, the Granite phenotype also contains items that
seem more incidental (e.g. cardiovascular issues with
Lymphoma). Thus, the focused and succinct CP-CLIC-
1-Shot phenotype has potential for more general use in
future clinical research.

5 Significance and Impact

This research shows that adding guidance, in the form
of constraints, to tensor decompositions can improve
the quality of the derived components in terms of inter-
pretability, sparsity, and diversity. However, obtaining
informative constraints can be expensive in regard to
time and effort required by domain experts. This work
shows that features of the CP decomposition process can
be utilized to discover constraints through the learning
method. The framework, CP-CLIC, gradually uncov-
ers between-mode cannot-link constraints and then vali-
dates the constraints using domain expertise in the form
of auxiliary information. CP-CLIC is a flexible frame-
work in that it 1) works on all or a subset of modes of
the tensor and 2) is well-suited for many different types
of data. In situations where the quality of the auxiliary
information is high, it may be appropriate to forgo the
gradual discovery of cannot-link constraints and supply
the dense cannot-link matrix at the beginning of the
learning process (CP-CLIC-1-Shot). We show that in
both simulated and computational phenotyping exper-
iments, gradually discovering the constraints can im-
prove the quality of the results.
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