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Abstract

Background: Researchers are developing methods to automatically extract clinically relevant and useful patient characteristics
from raw healthcare datasets. These characteristics, often capturing essential properties of patients with common medical conditions,
are called computational phenotypes. Being generated by automated or semiautomated, data-driven methods, such potential
phenotypes need to be validated as clinically meaningful (or not) before they are acceptable for use in decision making.
Objective: The objective of this study was to present Phenotype Instance Verification and Evaluation Tool (PIVET), a framework
that uses co-occurrence analysis on an online corpus of publically available medical journal articles to build clinical relevance
evidence sets for user-supplied phenotypes. PIVET adopts a conceptual framework similar to the pioneering prototype tool
PheKnow-Cloud that was developed for the phenotype validation task. PIVET completely refactors each part of the PheKnow-Cloud
pipeline to deliver vast improvements in speed without sacrificing the quality of the insights PheKnow-Cloud achieved.
Methods: PIVET leverages indexing in NoSQL databases to efficiently generate evidence sets. Specifically, PIVET uses a
succinct representation of the phenotypes that corresponds to the index on the corpus database and an optimized co-occurrence
algorithm inspired by the Aho-Corasick algorithm. We compare PIVET’s phenotype representation with PheKnow-Cloud’s by
using PheKnow-Cloud’s experimental setup. In PIVET’s framework, we also introduce a statistical model trained on domain
expert–verified phenotypes to automatically classify phenotypes as clinically relevant or not. Additionally, we show how the
classification model can be used to examine user-supplied phenotypes in an online, rather than batch, manner.
Results: PIVET maintains the discriminative power of PheKnow-Cloud in terms of identifying clinically relevant phenotypes
for the same corpus with which PheKnow-Cloud was originally developed, but PIVET’s analysis is an order of magnitude faster
than that of PheKnow-Cloud. Not only is PIVET much faster, it can be scaled to a larger corpus and still retain speed. We evaluated
multiple classification models on top of the PIVET framework and found ridge regression to perform best, realizing an average
F1 score of 0.91 when predicting clinically relevant phenotypes.
Conclusions: Our study shows that PIVET improves on the most notable existing computational tool for phenotype validation
in terms of speed and automation and is comparable in terms of accuracy.
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Introduction

Computational Phenotyping
The rapidly expanding availability of electronic health records
(EHRs) offers the promise to help clinicians better understand
the populations they serve. The ability to efficiently characterize
large volumes of healthcare data is essential to enabling
clinicians to use this information effectively. Recently, machine
learning and data mining researchers have attempted to address
this need in several ways. One such line of work concerns
developing methods to extract computational phenotypes from
raw health data in an automated, high-throughput manner. Here
we define a computational phenotype as a constellation of
clinically interesting characteristics that delineates a cohesive
group of patients. Such phenotypes can help clinicians reason
about patient populations, identify patient cohorts, and identify
and describe the progression of diseases within populations.

Although being able to extract phenotypes in a high-throughput
manner constitutes a potentially important step in helping
clinicians reason about their patient populations on a larger
scale, this potential will be realized only if the identified
phenotypes are clinically meaningful. Therefore, to increase the
utility of data-driven phenotypes, some measure quantifying
the inferred clinical meaningfulness should be reported alongside
the phenotypes to help practitioners sort signal from noise. To
address this need, we present Phenotype Instance Verification
and Evaluation Tool (PIVET), a tool that uses analysis of open
access (OA) PubMed (a corpus of online medical articles) to
generate evidence sets and clinical relevance scores for candidate
phenotypes. These evidence sets can be used by researchers
when developing and tuning new computational phenotype
methods; domain experts when they are validating candidate
phenotypes; and eventually, clinicians examining the phenotypes
associated with their patient populations.

PIVET is an improvement on a recently introduced prototype
tool called PheKnow-Cloud [1]. PheKnow-Cloud, which earned
the Distinguished Paper Award at the 2017 AMIA Joint
Summits, demonstrated that the medical expertise contained in
PubMed articles could be harnessed to build evidence sets for
the clinical validity of candidate phenotypes. PIVET is built on
the same conceptual framework as PheKnow-Cloud, but in
PIVET, we have optimized each piece of PheKnow-Cloud’s
pipeline to deliver vast improvements in speed and
interpretability without sacrificing the integrity of
PheKnow-Cloud’s phenotype evaluation.

The PheKnow-Cloud pipeline consists of three major steps: (1)
representing each phenotype so occurrences of it and related
terms in the corpus will be recognized (phenotypic
representation), (2) analyzing the corpus using the phenotype
representation (corpus analysis), and (3) calculating a clinical
relevance score and designation (clinical validity determination).
In the phenotype representation step, PIVET uses succinct and
possibly more interpretable representations of terms contained
within each phenotype. In the corpus analysis step, PIVET
migrates from a brute force approach of analyzing the corpus
to an approach that uses a NoSQL database to store and index
the articles efficiently. PIVET then utilizes a variation of the

Aho-Corasick algorithm to count appearances of the terms
within each phenotype. Finally, in the clinical validity
calculation step, PIVET streamlines the clinical relevance score
analysis and uses a model, trained on domain expert–verified
phenotypes, to classify the clinical relevance of supplied
phenotypes. Through a combination of these improvements,
PIVET runs an order of magnitude faster than PheKnow-Cloud
without sacrificing the discriminative power of the original tool.

PheKnow-Cloud was developed to function in high-throughput
phenotyping situations where a researcher has a large set of
potential phenotypes to validate. Consequently, PheKnow-Cloud
was built to run only in a batch setting. However, in clinical
settings and some research settings, a user may only have a few
new phenotypes to analyze, so we developed PIVET to run in
either an online or batch environment. This improvement will
allow clinicians to query PIVET even with single phenotypes,
which could possibly help in decision-making processes.
Additionally, it could help researchers tune their phenotype
extraction algorithms. Thus, while the prototype tool
demonstrated the analysis of medical articles could be used to
evaluate candidate phenotypes, the improvements in speed and
automation realized by PIVET make it useful in both research
and clinical settings.

The paper is organized as follows. We first present research
related to PIVET, including a description of the original
prototype tool (PheKnow-Cloud). Next, we describe the PIVET
framework, noting the important differences between
PheKnow-Cloud and the new system. We then report the
performance of PIVET on automatically generated phenotypes
as well as domain expert–curated phenotypes and demonstrate
how the framework can be used in an online setting. We
conclude the paper with a discussion of the limitations of this
work and thoughts on future directions.

Related Work

PubMed
PubMed Central (PMC) is an online collection comprising over
3 million biomedical and biological articles gathered from
thousands of journals [2]. PMC is maintained and curated by
the National Library of Medicine (NLM) at the US National
Institute of Health [3].

In regard to phenotypes, researchers tend to use PubMed as an
exploratory tool to discover new phenotypes rather than as a
resource to validate candidate phenotypes. Boland et al
orchestrated one of the few studies that used PubMed as a
validation tool. They mined EHRs for patients with predefined
disease codes and then compared the birth month and the disease
of these patients with a group of control patients who did not
have the disease codes present in their EHRs. They found a
relationship between certain diseases and birth months in the
case group [4]. They validated their results against papers
retrieved from PubMed that mentioned disease and birth month.
This study was novel in that it demonstrated PubMed could be
utilized to provide feedback for and validation of results
produced through automatic means.

More commonly, researchers use PubMed as tool to generate
hypotheses and discover phenotypes and other biomedical issues
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[5,6]. Multiple software packages such as LitInspector
(Genomatix Software Suite) [7], PubMed.mineR (CSIR) [8],
ALIBABA (Humboldt-Universität zu Berlin) [9], as well as
python packages such as Pymedtermino (Paris 13 University)
[10] and Biopython (Open Bioinformatics Foundation) [11]
have been developed to help researchers extract and visualize
PubMed. Other researchers have built tools to rank search
results, discover topics and relationships within search results,
visualize search results, and improve user interaction with
PubMed [12].

Text Mining PubMed
Jensen et al give a thorough overview of how PubMed can be
harnessed for information extraction and entity recognition [6].
Natural language processing (NLP) techniques form one
approach to mining the literature. Some researchers have used
NLP techniques on PubMed to discover disease-gene
associations [13], and others have used PubMed in concert with
additional data sources to generate phenotypes [14]. Collier et
al used NLP techniques in conjunction with association rule
mining to discover phenotypes using PubMed [15]. However,
none of these approaches have sought to use PubMed as a
validation tool for data-driven phenotypes.

Co-occurrence analysis, which is what PheKnow-Cloud and
PIVET are built on, is more widely used because it is simple to
implement and interpret. Researchers have applied co-occurrence
strategies to generate phenotypes. Some have performed
co-occurrence analysis on PubMed to study links between
diseases [16], which can be viewed as a simple type of
phenotype discovery. Others have explored relationships
between phenotypes and genotypes [17,18]. In contrast to this
work, our approach uses phenotypes as the starting point and
performs co-occurrence analysis over the PMC corpus as a
means of assessing their validity. We assume these phenotypes
were induced over other sources (eg, EHRs) and not from PMC.
Co-occurrence analysis has the drawback of not being able to
explicitly model the type of relationship that exists between two
or more terms (eg, negative or positive). However, we require
the terms within a phenotype be positively related to one
another, which aligns with the findings of publication bias
research.

Publication bias is the tendency for the academic publishing
ecosystem (eg, researchers, reviewers, and editors) to submit
and publish articles that show positive relationships between
the entities being studied. The nonrandom omission of results
that is not based on the quality of the methodology but on the
direction of the results is a well-studied area of research and
has been shown to have a negative effect on research in many
cases [19-24]. In general, publication bias introduces risks to
researchers and to the general public to which research is applied

(via policies and treatment decisions). However, in
PheKnow-Cloud and PIVET, this bias is a strength rather than
a drawback because the current focus of PheKnow-Cloud and
PIVET is on the presence of relationships within the
user-supplied candidate phenotypes. Furthermore, as
co-occurrence analysis does not attempt to infer information
about the type of relationship or any causal information, the
presence of publication bias allows for the assumption that when
two phrases occur together, it may imply that a relationship
exists [20,25,26].

PheKnow-Cloud Prototype
Phenotype evaluation via co-occurrence analysis of online
articles was first introduced by Bridges et al [1]. Henderson and
colleagues improved on the evaluation framework and developed
a prototype tool implementing the approach called
PheKnow-Cloud, which provided a Web interface for
researchers and clinicians to interact with the technology [27].
We refer to the tool and framework introduced in these two
works as PheKnow-Cloud. The input to the PheKnow-Cloud
process is a set of potential phenotypes. Each phenotype consists
of medical terms, which we refer to as phenotypic items, that
are assumed to have been generated by an automatic
high-throughput phenotyping process. PheKnow-Cloud builds
evidence sets for batches of phenotypes based on co-occurrence
analysis of the PubMed corpus (see [1,27] for details).

PheKnow-Cloud was developed as a proof-of-concept tool, and
although it showed the PubMed corpus could be used to
determine whether a phenotype was clinically valid, it had
several drawbacks that PIVET addresses. One is the length of
time the prototype method required to complete the analysis
process; Table 1 compares the time that each method takes to
perform each step. The computational bottlenecks for the
prototype method are the co-occurrence generation and clinical
relevance score analysis steps. The synonym generation step
speed is determined by the number of requests that can be made
to the NLM Medical Subject Headings (MeSH) database, which
is an off-site system that places limits on the number of requests
users can make in a given window of time. Overall, PIVET
speeds up this process considerably. Another drawback of
PheKnow-Cloud is that the clinical relevance scores for
phenotypes are calculated only relative to all other phenotypes
and must be used in a batch setting. In contrast, PIVET can
analyze a single phenotype at a time, which makes it more
flexible than PheKnow-Cloud. Finally, designating whether a
candidate phenotype is clinically relevant or not is a manual
process in PheKnow-Cloud. For PIVET, we built a classifier
trained on a validated set of phenotypes. This classifier can be
ported to other environments and can be used to automatically
classify new, individual phenotypes.
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Table 1. The time in seconds and (hours: minutes: seconds) each method used to complete task in phenotype generation process. All experiments were
run on a machine with 3 AMD A6-5200 APU with Radeon (TM) HD Graphics processors, 8 GB of memory, 1 TB hard drive, running Ubuntu 14.04.5
LTS.

PIVETaPheKnow-CloudTask

5948 (01:39:08)7809 (02:10:09)Synonym generation, seconds (hours:minutes:seconds)

289 (00:04:59)50,822 (14:07:02)Co-occurrence analysis, seconds (hours:minutes:seconds)

2 (00:00:02)2092 (00:34:52)Lift analysis, seconds (hours:minutes:seconds)

6239 (01:43:59)60,723 (16:52:03)Total, seconds (hours:minutes:seconds)

aPIVET: Phenotype Instance Verification and Evaluation Tool.

Methods

Methods Overview
In this section, we describe how PIVET performs co-occurrence
analysis on an online corpus of publicly available journal articles
to build evidence sets for phenotypes. This involves five
components: (1) a database of phenotypes to analyze, (2) a
database of the PubMed article corpus indexed by medical terms
the articles contain, (3) an algorithm to generate and rank
synonyms for the phenotypic items (phenotypic item
representation), (4) a co-occurrence analysis module (corpus
analysis), and (5) a clinical relevance scoring system (clinical
validity determination). Figure 1 captures the PIVET workflow
and the different components of the system. Both MongoDB
(an open-source, document-based NoSQL database system) and
MySQL (an open-source, relational database management
system) are used to ensure consistency, durability, and
efficiency.

Phenotype Extraction and Storage
PIVET can be used to analyze phenotypes generated from a
variety of methods. Every phenotype analyzed by PIVET is
stored in a MongoDB using a standardized representation to

ensure consistency. We also created a simple parser to ingest
new phenotypes that are stored in JavaScript Object Notation
(JSON). The choice of JSON will also facilitate the eventual
integration with a Web platform where users can provide new
phenotypes. We populate the phenotype database with
phenotypes from different sources (Figure 2).

For our purposes, we collected a total of 102 phenotypes from
the following sources: (1) two high-throughput phenotyping
algorithms, (2) a catalog of algorithms from a collaborative
database, and (3) a peer-reviewed paper. Each phenotype we
extracted was either derived by domain experts or validated as
clinically relevant by domain experts.

The phenotype database includes 80 domain expert–verified
phenotypes generated using two unsupervised, nonnegative
tensor factorization models to perform automated phenotyping
[28,29]. These were subsequently annotated by a panel of
domain experts, and they were the phenotypes used to validate
PheKnow-Cloud. The two automatic methods, Rubik [29] and
Marble [28], extracted 30 and 50 candidate phenotypes,
respectively, from the diagnoses and medications of 7744
deidentified patients from Vanderbilt University Medical Center
recorded over a 5-year observation period.

Figure 1. Phenotype Instance Verification and Evaluation Tool (PIVET) analysis process. Phenotypes are collected in standardized format in a MongoDB
(ie, “phenotype database”). For a single phenotype, synonyms for each phenotypic item in a phenotype are generated using the National Library of
Medicine (NLM) Medical Subject Headings (MeSH) database and ranked based on their similarity to the phenotypic item (ie, “phenotypic item
representation”). Co-occurrence analysis is performed on PubMed using the synonyms generated in the previous step (ie, “corpus analysis”). Lift analysis
is performed, clinical relevance scores are calculated, and a classifier classifies the phenotype as clinically relevant or not (ie, “clinical validity
determination”). The results of the analysis of the phenotype are presented to the viewer (ie, “phenotype evidence results”).
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Figure 2. Database for storing phenotype information. The large cylinder at the top represents the phenotype database. The phenotype database consists
of phenotypes (documents) extracted from three different sources (bottom). The first set of phenotypes, 80 in total, were generated by machine learning
algorithms called Marble and Rubik and annotated for clinical relevance by 3 medical doctors. The second set of phenotypes, 13 in total, we refer to as
gold standard phenotypes and come from Phenotype KnowledgeBase, an online repository of domain expert–developed phenotypes. The third set of
phenotypes, 9 in total, we refer to as silver standard phenotypes and were derived by domain experts and extracted from a peer-reviewed journal article.

Each member of the panel assigned all phenotypes one of the
following three labels: (1) yes, the candidate phenotype is
clinically meaningful and therefore a phenotype; (2) no, the
candidate phenotype is not clinically meaningful and therefore
not a phenotype, or (3) maybe, the candidate phenotype is
possibly clinically meaningful. Of the 80 combined Marble and
Rubik phenotypes, the domain experts labeled 11 (14%, 11/80)
as clinically meaningful, 62 (78%, 62/80) as possibly significant,
and 7 (8%, 7/80) as not clinically meaningful. For the handful
of phenotypes where the domain experts disagreed on the
clinical relevance, the label that awarded the least amount of
clinical significance was assigned. These annotated phenotypes
were graciously shared by the authors of Rubik.

Additionally, the phenotype database includes two groups of
domain expert–derived phenotypes. The first set, which we will
refer to as the “gold standard” phenotypes, are from the
Phenotype KnowledgeBase, an online phenotype knowledgebase
that stores researchers’ collaborations of electronic algorithms
of phenotypes [30]. Gold standard phenotypes are developed
by panels of domain experts across multiple sites. We manually
extracted 13 phenotypes that have been reviewed and finalized
by the Electronic Medical Records and Genomics phenotype
working group. The second set of domain expert–derived
phenotypes, which we will refer to as “silver standard”
phenotypes, are the group of validated phenotype algorithms
published by Ritchie et al [31]. Silver standard phenotypes are
developed by a panel of domain experts at a single site. Nine
phenotypes were manually extracted from the article. This
peer-reviewed paper is not part of the article corpus. In
summary, the full set of 102 phenotypes collected over the three
different sources consists of 80 machine learning–extracted
phenotypes validated by domain experts, 13 gold standard
phenotypes, and 9 silver standard phenotypes.

PubMed Open Access Corpus
PIVET works by analyzing co-occurrences of phenotypic items
within the PMC OA subset, an openly available online repository
of medical articles, which constitutes roughly one-third of the
total collection of articles in the PMC (over 1 million articles).

The articles within the OA subset are copyright protected but
have a flexible license concerning reuse. Trimmed down
versions of the articles are stored in a MongoDB. We use the
NoSQL database MongoDB because it is a document-based
database without restrictive schema, ideal for storing articles
that vary in content. Furthermore, MongoDB has been shown
to outperform SQL-based databases in terms of read, write, and
delete operations and scaling to larger datasets [32-34].

We limit the corpus in the database to those articles with
attached MeSH terms; this amounts to 379,766 articles. MeSH
is a hierarchical vocabulary curated by the NLM to index and
catalog biomedical information [35]. There are 26,000
biomedical concepts or headings and over 200,000
supplementary concepts that form qualifiers for the headings.
MeSH has two major benefits over the other existing ontologies.
First, a large portion of the PubMed corpus has been manually
annotated with MeSH labels. Expert indexers at the NLM assign
MeSH terms to each article that best summarize the text. These
terms are periodically reviewed and updated. We index the PMC
database with the MeSH terms each article contains, and we
represent each item in a phenotype with a set of MeSH terms,
which is discussed in the next section. The index and phenotypic
item representation combined with search optimization
techniques described in the subsequent section speed up the
co-occurrence analysis process considerably.

Phenotypic Item Representation: Constructing Medical
Subject Headings Synonym Sets
Once the phenotypes are stored in the database, the next step is
to build representations for the terms within each phenotype,
which we refer to as “phenotypic items.” Medical terms can
have various synonyms (representations) across different
articles. For example, the term “heart attack” can also be referred
to as “cardiovascular stroke,” “myocardial infraction,” and
“cardiogenic shock.” Thus, it is important to generate a list of
synonyms for each phenotypic item to achieve high recall within
the PubMed corpus. PheKnow-Cloud built representations for
each phenotypic item from related terms and concepts found in
the following medical ontologies: MeSH, Systemized
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Nomenclature of Medicine-Clinical Terms, and International
Classification of Diseases-9 or -10. Further experiments
indicated this approach can introduce noise into the
representation. Instead, PIVET uses only MeSH terms to
generate a phenotypic item representation for each phenotypic
item with the following two-step process: (1) assign the most
relevant MeSH term and (2) generate a ranked list of closely
related MeSH terms.

To generate a candidate set of representations for a phenotypic
item, PIVET first queries the NLM MeSH database using
Biopython [11] with a cleaned version of the phenotypic item.
The search returns a set of MeSH tree numbers. MeSH terms
are formed into a hierarchical tree, where each MeSH term is
assigned a node in the tree and labeled by a number. This
number designates the MeSH term’s place in the hierarchy. For
example, the tree number of “hypertension” is C14.907.489,
which indicates that it is a child of the node C14.907 (“vascular
diseases”). Vascular diseases, in turn, is a child of node C14
(“cardiovascular diseases”). Gathering nodes with the prefix
C14.907.489 gives a set of possible synonyms for the original
phenotypic item “hypertension.” Generally, this hierarchy gives
a relatively straightforward method for finding synonyms and
relevant concepts.

As the query does not rank the results (ie, it does not designate
which tree number is most relevant to the search), it is necessary
to identify the MeSH term that most closely matches the
phenotypic item. For example, querying the phenotypic item
“hypertension” returns the tree numbers that map to the natural
language headings: “hypertension, malignant”; “hypertension,
portal”; “hypertension, pulmonary”; “hypertension, renal”;
“hypertension”; “masked hypertension”; “prehypertension”; etc
(shown in Figure 3). PIVET designates the “most relevant
synonym” for the original phenotypic item by finding the natural
language heading associated with each of the tree numbers that
most closely matches the original phenotypic item. Specifically,
for each natural language heading or synonym, PIVET forms
a set where each element is a word of the synonym and then
finds size of the intersection between the set and the original

cleaned item, which has also been turned into a set. It also
records the size difference between the two sets. For example,
the phenotypic item “hypertension” and candidate synonym
“hypertension, malignant” have an intersection of length one
(ie, “hypertension”) and a size difference of 1. However, PIVET
would assign “hypertension” as the most relevant synonym
because it has an intersection of size 1 and a set size difference
of 0 with the original phenotypic item. In the event of a tie, the
algorithm designates the tied candidate synonyms as the most
relevant synonyms and builds the synonym sets for each.

The remaining synonyms are then ranked based on the
percentage overlap between each candidate synonym and the
most relevant synonym in our PubMed OA corpus. The
percentage overlap, calculated as the number of times the
candidate synonym appears with the most relevant synonym
divided by the number of times the candidate synonym appears
overall, serves as the relevance score to rank each synonym.
The ranked list is then used to adjust the number of synonyms.
An example of a ranked synonym set can be seen in Figure 3.

Corpus Analysis
The aim of the corpus analysis step is to gauge the strength of
the relationship between items in a phenotype. However, it is
unlikely all items in a phenotype will appear together, so instead,
PIVET searches the corpus for occurrences of subsets of the
phenotypic items (represented by their phenotypic item MeSH
synonym sets as described in the last section). Through
experimentation, we found only a small fraction of subsets of
any phenotype occur in the article corpus. This means it is
inefficient as well as computationally infeasible for even
moderately sized phenotypes to look for all possible subsets (ie,
the power set in this case has 2^|S| * n1 * n2 * …* n|S| elements,
where |S| is the cardinality of the phenotype and is the synonym
set size for phenotypic item i).

Moreover, as the size of the subset increases, the likelihood of
all the terms appearing in any given article diminishes.
Therefore, it is not necessary to enumerate all the possible
subsets.

Figure 3. Synonym generation process for the term “hypertension.” First the National Library of Medicine (NLM) Medical Subject Headings (MeSH)
database is queried with the term “hypertension,” which returns a list of candidate MeSH terms. From this query result, the “most relevant synonym”
is determined through a process of string matching between the original queried term and the candidate synonyms. In this case, the most relevant synonym
is “hypertension.” The candidate synonyms are then ranked based on the percentage overlap between PubMed articles that contain the MeSH term
associated with the candidate synonym and the MeSH term of the most relevant synonym.
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Using this observation, we implement an algorithm inspired by
the string-matching Aho-Corasick algorithm to search the space
effectively [36], an approach also made popular by the a priori
algorithm for finding association rules in data mining. We sketch
the algorithm with a set comprised terms A, B, C, and D that
we assume all occur individually in the corpus. We observe that
if terms A and B, comprising a tuple (A,B), do not co-occur in
any article together, then any larger subset also containing these
two terms will necessarily have zero counts (eg, [A,B,C],
[A,B,D], and [A,B,C,D]). As a result, only nonzero (feasible)
co-occurrence subsets need to be expanded. A key insight for
efficient expansion of an existing co-occurrence subset with
nonzero counts is to join it with the associated tuple pairs with
one overlapping term that have nonzero counts. For example,
if the only nonzero tuple pairs are (A,C), (A,D), (B,C), (B,D),
and (C,D), then the possible tuples with cardinality 3 are (A,C,D)
and (B,C,D). As increasing the cardinality size of the tuple is
equivalent to a join operation in a SQL database, PIVET uses
MySQL to implement this portion of the analysis. After
constructing the query tuples of MeSH terms in MySQL, PIVET
then counts the number of articles where each tuple appears.

Additionally, we set a few more restrictions on the subset queries
to make them even more efficient. For one, each subset is
constructed using “different” phenotypic items to avoid arbitrary
inflation of counts. If two or more phenotypic items contain
identical MeSH synonym sets, a “super” phenotypic item is
formed (eg, “tuberculosis of adrenal glands” and “tuberculosis
of adrenal glands, bacteriological or histological examination
not done” are merged together). In addition, terms for the same
phenotypic item (eg, all MeSH terms associated with
“myocardial infraction”) are never paired with one other.

Given these tuple co-occurrence counts, the next step is to map
the co-occurring subsets of phenotypic synonyms back to their
phenotypic items. For example, if the synonym set for the
phenotypic item “attention deficit disorder” contains two
synonym terms “attention deficit and disruptive behavior
disorders” and “attention deficit disorder with hyperactivity,”
then any tuple of cardinality 1 with either of these terms is
collected, and the sum of the co-occurrences is then designated
as the number of times the phenotypic item “attention deficient
disorder” occurred. The aggregated co-occurrence counts for
all the nonzero subsets of the phenotypic items are then used to
calculate the clinical relevance scores for the phenotype.

Clinical Validity Determination
PIVET uses a two-step process to calculate the clinical relevance
score: (1) obtain the lift (see below) for each co-occurring subset
of phenotypic items and (2) classify the relevance of the
phenotype based on features derived from the previous step. As
in PheKnow-Cloud, PIVET uses lift to evaluate the strength of
the relationship between the items in a phenotype. Given items
I1, I2, …, IN, lift is defined in equation 1 in Figure 4.

Lift is a widely used metric to measure the statistical
independence of objects [37]. A lift of greater than 1 suggests
a nonrandom relationship. Although there are many metrics (eg,
support, gain, certainty, confidence, and coverage) that can help
assess the plausibility of relationships between objects, lift has
the benefit of being symmetric (ie, lift[A,B]=lift[B,A]), and

therefore, the order of the objects does not matter [38]. Another
metric called leverage also has this symmetric property.
However, unlike leverage, lift is not impaired by the “rare item
problem,” which refers to the property of a metric excluding
objects that appear infrequently [39]. In the OA corpus,
phenotypic items appear infrequently, so it is especially
important to use a metric that does not suffer from the rare item
problem. In PIVET, the lift calculation entails dividing the
percentage of times items appear together in the corpus by the
product of percentages of times each item appears individually
in the corpus, which can be rewritten as equation 2 in Figure 4,
where count(A) is the number of articles in the corpus that
contain the set A, and D is the number of documents in the
corpus.

It was observed in PheKnow-Cloud that the lift increases
exponentially with the size of the co-occurrence set [1]. This is
consistent with equation 2. For example, if a set of six items
appears together then the fraction of counts will be multiplied
by the size of the corpus to the fifth power. These lifts of larger
co-occurring subsets drown out the lifts of smaller-sized subsets,
which is not necessarily desirable. Thus, we must “normalize”
the cardinality of co-occurrence sets. To this end,
PheKnow-Cloud calculated the lift for any subset that occurred
in the corpus without regard to whether the subset occurred in
a phenotype, separated the lifts by the cardinality of the subsets,
computed the SDs above the median within that cardinality,
aggregated all the SDs above the median values back into the
respective phenotypes, and averaged the SD values for each
phenotype. This average served as the “clinical relevance score”
for that phenotype. This implies that the relevance score will
vary depending on the phenotype corpus, as phenotype scores
are relative to other candidate phenotypes.

PIVET mitigates this issue inherent to PheKnow-Cloud
normalization by including the number of tuples with zero
co-occurrences. The number of subsets that had zero occurrences
in the corpus is calculated using a simple combinatorial formula
as shown in equation 3 in Figure 4, where S^j is the number of
phenotypic items in phenotype j.

Including the zero occurrence counts for each cardinality pulls
down the overall lift of the larger items (as it is improbable that
large subsets of the phenotype will occur) and thus mitigates
the impact of larger co-occurring subsets. Consequently, PIVET
avoids the need to pool the phenotypic items across all the
phenotypes and avoids unnecessary co-occurrence queries for
tuples that do not occur in a phenotype. Perhaps more
importantly, this implies that the relevance score is decoupled
from the phenotype corpus and can be computed independently
for a given phenotype.

The final step in the process is to classify the relevance of the
phenotype. We compared four separate classification models:
logistic regression, logistic regression with least absolute
shrinkage and selection operator (lasso), ridge logistic
regression, and k-nearest neighbors (k-NN) on the entire
phenotype corpus to predict clinically significant vs not
clinically significant. Gold and silver standard phenotypes are
denoted as clinically significant because of their relatively small
numbers.
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Figure 4. Lift, number of zeros, and F1 equations.

The features we use are lift mean, lift median, and lift SD for
each individual cardinality from 1, 2, 3, and 4 (12 features). We
also include the overall lift mean, median, and SD (3 features)
and the average cardinality of subsets of the phenotype with
nonzero co-occurrences (16 features in total). Model-specific
parameters (ie, K for k-NN and the regularization parameter for
ridge and lasso) are chosen based on the best area under receiver
operating characteristic via five-fold cross-validation.

In summary, the PIVET lift analysis differs from that performed
by PheKnow-Cloud in two key ways. First, we eliminate the
need to pool the lifts across the entire phenotype corpus, which
means that phenotypes can be analyzed on an individual basis.
Second, we introduce classification models to determine
relevance based on lift-based features, removing the need to
perform an exhaustive search to determine the clinical relevancy
threshold.

Results

Results Overview
PIVET is evaluated using two different methods. The first
compares the new framework with its predecessor,
PheKnow-Cloud, on the set of phenotypes PheKnow-Cloud
examined. Differences in computation time, synonym
generation, and clinical relevance scores are quantitatively and
qualitatively examined. This comparison shows that PIVET
delivers clinical relevance determination performance
comparable with that of PheKnow-Cloud in a fraction of the
time. Furthermore, PIVET’s performance justifies shifting from
the old to the new framework.

In the second set of experiments, we demonstrate the full PIVET
framework on the combined set of machine learning–generated
phenotypes, gold standard phenotypes, and silver standard

phenotypes. This experiment and discussion show how PIVET’s
classification method can be used to identify clinically relevant
phenotypes from the pool of possibly clinically relevant
phenotypes.

PheKnow-Cloud Versus Phenotype Instance
Verification and Evaluation Tool Comparison

Phenotypic Item Representation
A subset comprising one-quarter of the PMC OA corpus is used
to compare our framework’s use of MeSH terms for the
phenotypic item synonym sets with PheKnow-Cloud’s
phenotypic item synonym sets. This subset is identical to the
one used in the original evaluation of Pheknow-Cloud (see [1]
for more details regarding the construction of the dataset). We
limit this subset to articles with MeSH terms, which results in
a corpus of articles that comprises 7.85% of the PMC OA subset
(94,673/1,206,506). We restrict the phenotypes in question to
the 80 domain expert–verified, machine learning–generated
phenotypes used in the original papers [1,27]. Table 2 shows
the clinical validity annotations of these 80 phenotypes.

PIVET takes less than 2 hours to evaluate 80 phenotypes on the
8% PMC OA subset; PheKnow-Cloud required 17 hours for
the same phenotypes. The breakdown of the computation time
for the major components of the two frameworks is shown in
Table 1. The phenotypic item representation process time is
roughly the same for both PIVET and PheKnow-Cloud, and
querying the NLM MeSH database remains the bottleneck.
However, PIVET is 170 and 35 times faster for the corpus
analysis and clinical relevance determination steps, respectively.
Not only does PIVET provide an overall speedup of 10 times
on the same article corpus, but the entire process does not need
to be repeated to analyze new phenotypes.

Table 2. Counts of the 80 machine learning–generated phenotypes by clinical relevance annotation category.

Count, n (%)Domain expert annotation category

11 (14)Clinically significant

62 (78)Possibly clinically significant

7 (8)Not clinically significant
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As discussed in an earlier section, the phenotypic item
representation is different between the two frameworks. PIVET
uses sets of MeSH terms to represent each phenotypic item,
whereas PheKnow-Cloud’s representative synonym sets are
built from several ontologies that include the MeSH terms.
Overall, PIVET finds more descriptive, discriminative, and
possibly more interpretable representations of phenotypic items,
whereas PheKnow-Cloud’s synonym sets produced a sizeable
number of less descriptive words in comparison. Figure 5 shows
the top 50 PheKnow-Cloud-generated synonyms that were found
in the corpus. Although PheKnow-Cloud excludes the first 30
most common terms from its co-occurrence analysis, the
remaining 20 words are not discriminative. For example, the
word “diseases” is associated with many of the phenotypic items
but is too generic to be a meaningful representation of the items.

Further qualitative evidence of the nonspecific nature of the
synonym sets produced by PheKnow-Cloud can be found by
consideration of examples. Table 3 shows the synonyms for the
phenotypic item “unspecified chest pain.” Under the
PheKnow-Cloud framework, although discriminative terms
such as “unspecified chest pain” and “chest pain” are present
in the synonym set, the terms “pain,” “chest,” and “unspecified”
are words that will be present in many articles that do not
actually refer to “unspecified chest pain.” In contrast, under the
PIVET framework, the MeSH term for “unspecified chest pain”
is “chest pain,” which while less specific than the original term,
has the advantage that it will only be found in articles that
mention chest pain.

Figure 5. Most common synonyms found in corpus using PheKnow-Cloud synonym generation process.

Table 3. Comparison of representation of the phenotypic item “unspecified chest pain” generated by PheKnow-Cloud (left column) and Phenotype
Instance Verification and Evaluation Tool (PIVET; right column).

PIVETa (MeSHb terms)PheKnow-Cloud (synonyms)

Chest painUnspecified chest pain

—Chest pain

—Unspecified chest

—Pain

—Chest

—Unspecified

aPIVET: Phenotype Instance Verification and Evaluation Tool.
bMeSH: Medical Subject Headings.
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In some cases, the synonym sets are reasonable representations
of the item and similar for both frameworks. For example,
PIVET and PheKnow-Cloud can capture the meaning of the
phenotypic item “laxatives” (shown in Table 4).
PheKnow-Cloud extracts synonyms that are close literal matches
to the phenotypic item or specific kinds of laxatives. Similarly,
PIVET finds a MeSH term that is an exact match to the
phenotypic item and a specific example of the phenotypic item.
When looking through the corpus for occurrences of the original
term “laxatives,” both frameworks should recover mentions of
the original term.

Clinical Validity Determination
Next, we examine how PIVET’s phenotype representation
compares with that of PheKnow-Cloud in terms of identifying
clinically relevant phenotypes. To do this, we instrumented
PIVET to record co-occurrences in the same manner as
PheKnow-Cloud. Table 5 summarizes the number of articles
that are found under each framework. Although the PIVET
MeSH representation identifies significantly fewer articles from
the corpus, the articles have an 85% overlap with
PheKnow-Cloud articles. In conjunction with Figure 5 and Table
2, the results suggest that not all of the PheKnow-Cloud articles
are relevant or directly related to the phenotypic item. Thus,
PIVET synonym sets may result in higher precision.

Finally, we compared the two frameworks’ ability to
discriminate between clinically significant and not significant

phenotypes using the process PheKnow-Cloud used. To do this,
we first calculated the normalized lift for all the phenotypes
using the synonyms sets generated by PheKnow-Cloud and
PIVET. Figure 6 plots the pooled normalized lift values for the
80 phenotypes based on the annotated significance level. As we
saw in the PheKnow-Cloud framework, under the PIVET
representation, the distributions of normalized lift between
significant and not significant phenotypes are not identical,
which indicates that lift scores can be used to discriminate
between significant and not significant phenotypes.

In the final step, we calculated clinical validity scores for each
phenotype by taking the average of the normalized lift scores
in each phenotype. An exhaustive search was performed on the
clinical validity scores to determine the boundaries for PIVET
and PheKnow-Cloud, which was the method used in
PheKnow-Cloud that maximized the F1 score. F1 is computed
as equation 4 in Figure 4.

We obtained an F1 score of 0.85 and 0.89 for PIVET and
PheKnow-Cloud, respectively. Although the predictive
performance of PIVET is slightly lower than that of
PheKnow-Cloud, the performance loss is negligible when
compared with the total run time of each framework (Table 1)
on 8% of the PMC OA subset. Moreover, by mapping directly
to MeSH terms, PIVET can leverage the “automatic” assignment
of MeSH terms for all articles and can have a higher probability
of capturing appearances of the original phenotypic item in the
corpus.

Table 4. Comparison of representation of the phenotypic item “laxatives” generated by PheKnow-Cloud (left column) and Phenotype Instance Verification
and Evaluation Tool (PIVET; right column).

PIVETa (MeSHb terms)PheKnow-Cloud (synonyms)

LaxativesLaxatives

Senna extractLaxatives pharmacological action

—Psyllium

—Senna

—Senna extract

aPIVET: Phenotype Instance Verification and Evaluation Tool.
bMeSH: Medical Subject Headings.

Table 5. Number of articles that each framework’s synonym generation process found.

Number of articlesSynonym type

28,068PIVETa

79,786PheKnow-Cloud

23,901PIVET and PheKnow-Cloud

aPIVET: Phenotype Instance Verification and Evaluation Tool.
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Figure 6. Normalized lift comparison between Phenotype Instance Verification and Evaluation Tool (PIVET) and PheKnow-Cloud. Normalized lift
is calculated as follows: the lift for any subset of phenotypic items that occurred in the corpus without regard to whether the subset occurred in a phenotype
is calculated. Then the lifts are separated by the cardinality of the subsets, and the standard deviations above the median within that cardinality is
computed (ie, this is the normalized lift). The boxplot depicts the normalized lift for the subsets that appeared in each type (ie, “maybe significant,” “not
significant,” and “significant”) of phenotype.

Phenotype Instance Verification and Evaluation Tool
In the first set of experiments, we demonstrated PIVET’s
synonym generation process results in discriminative
performance comparable with that of PheKnow-Cloud in a
fraction of the time. In the second set of experiments, we use
PIVET’s full framework (Figure 1) to predict which phenotypes
are clinically valid and show how PIVET can be used to examine
phenotypes that are possibly clinically valid.

Corpus Analysis: Classification Score Evaluation
We evaluated the ability of the PIVET classification system to
identify clinically significant phenotypes. The entire phenotype
corpus, including the gold and silver standard phenotypes, were
analyzed using the entire PMC OA corpus. There is ambiguity
regarding the “possibly significant” Marble and Rubik
phenotypes, and they were therefore excluded from the training
set. Thus, a total of 45 phenotypes were used to build the
classifier, with 7 annotated as not significant.

The diversity of the phenotypes in our corpus yielded
phenotypes that contained anywhere from 3 to 63 phenotypic
items. The size of the phenotype sets impacted the cardinality
of the nonzero co-occurrence tuples; thus, we limited the lift
summary features to only include tuples up to 4 (the average
across the phenotype corpus). Figure 7 illustrates the differences
in the mean lift values between the various categories, with the
gold and silver standard separated from the clinically significant
group. The results show that the phenotypes that are clinically
significant exhibited a higher (more positive) distribution in lift

mean compared with the nonsignificant phenotypes. Moreover,
for co-occurrence cardinality less than 5, gold standard
phenotypes generally had a higher lift. The figure suggests it is
suitable to use the mean lift of tuples of cardinalities 2, 3, and
4 as individual features to distinguish the clinical significance
of a phenotype.

Next, we used logistic regression to analyze the effect of the
size of the synonym set. For each synonym set size ranging
from 2 to 10, we used five-fold cross-validation to examine how
the size of the synonym set generalizes to an unseen dataset for
different metrics. Figure 8 plots the average precision, recall,
and F1 score as a function of the synonym set size. The figure
shows significant increases for all three metrics at synonym size
6, at which point an F1 score of 0.89, recall rate of 0.89, and a
precision score of 0.88 are achieved. On the basis of these
results, we used six synonyms for each phenotypic item for the
remaining analysis.

We repeated the classification process using four models
(logistic regression, k-NN, logistic regression with lasso, and
ridge-regularized logistic regression) with six MeSH term
synonyms for each phenotypic item. The results are shown in
Table 6. Of the four classification models, ridge regression
achieved the highest F1 score of 0.91 and an Area Under the
Receiver Operating Curve score of 0.60. On the basis of these
results, we use ridge regression as our classification model for
the remaining results. Incorporating a classification model into
the framework is an improvement over PheKnow-Cloud, which
depended on an exhaustive search to obtain a boundary between
clinically relevant and not clinically relevant phenotypes.
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Figure 7. Log mean lift for co-occurrences of sizes 2, 3, 4, and 5 for each type of phenotype.

Figure 8. Classification scores for different sizes of synonyms using the Phenotype Instance Verification and Evaluation Tool (PIVET) framework.

Table 6. Performance metrics for classification task to identify clinically relevant phenotypes using synonym sets of size 6.

Ridge regressionLassoK-nearest neighborsLogistic regressionMetric

0.600.330.720.79Area Under the Receiver Operating Curve

0.910.770.900.87F-1
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Table 7. Diagnoses and medications for candidate phenotypes along with domain expert annotations, classification score, and lift for two possibly
significant phenotypes with high (top two rows) and low (bottom two rows) classification scores.

LiftScoreCommentMedicationsDiagnoses

317.3801The arrhythmic heart patientStatins, proton pump inhibitors, gabapentin,
noncardioselective beta blockers, sodium,
group v antiarrhythmics, potassium-sparing
diuretics

Hypotension, heart failure, cardiac dysrhythmias,
unspecified chest pain, ischemic heart disease,
hypertension, cardiomyopathy

24683.3830.999Heading toward dialysisAntiadrenergic agents, centrally acting, an-
giotensin receptor blockers, angiotensin con-
verting enzyme inhibitors, selective immuno-
suppressants, loop diuretics, gabapentin

Disorders of fluid, electrolyte, and acid-base
balance; other and unspecified anemias; hyper-
tensive chronic kidney disease; hypertension;
diabetes mellitus; type 2; other disorders of kid-
ney and ureter; chronic kidney disease

0.2700.418GastroenteritisHeparins, antihistamines, 5HT3 receptor antag-
onists, minerals and electrolytes, narcotic
analgesic combinations, proton pump inhibitors

Volume depletion; dehydration, nausea, or
vomiting; hypopotassemia; abdominal pain

0.5090.417Lung diseases?Anticholinergic bronchodilators, loop diureticsDisorders of fluid, electrolyte, and acid-base
balance; other diseases of lung; hypotension;
pleurisy, atelectasis, and pulmonary collapse;
unspecified chest pain; other disorders of the
kidney and ureter

Clinical Validity Determination: Phenotype Instance
Verification and Evaluation Tool Analysis of Possibly
Clinically Significant Phenotypes
We demonstrate the potential of using PIVET to annotate
phenotypes by examining the 62 “possibly clinically significant”
phenotypes in our phenotype dataset. Using the PIVET
classification ridge model, we predicted the clinical relevance
scores of these ambiguous phenotypes. Table 7 shows the two
extremes based on the averaged prediction score: phenotypes
with the highest probability of being “clinically significant”
(top two rows) and phenotypes with the lowest probability of
being “clinically significant” (bottom two rows), as well as the
annotator’s comment on the phenotype and the average lift
calculated by PIVET. The prediction scores seem to reflect the
annotator’s certainty, as the lowest prediction score is associated
with a question mark, whereas the top two scoring phenotypes
seem to capture a relevant concept. The results underscore the
potential of PIVET system to help resolve uncertainties.

Discussion

Principal Findings
Several automated, high-throughput phenotype methods have
been proposed to help clinicians quickly characterize and
understand vast amounts of healthcare data. However, the
potential for computational phenotyping to help physicians
reason about patient populations will only be realized if the
phenotypes generated are clinically meaningful. To increase the
utility of such data-driven phenotype discovery, some measure
of inferred clinical meaningfulness should be reported to help
clinicians sort the signals from the noise. We developed PIVET
to meet this need. PIVET generates evidence sets and clinical
relevance scores for data-driven candidate phenotypes using
the literature available in PubMed, a large online repository of
biomedical articles.

We compared our framework with PheKnow-Cloud, its
predecessor, and showed that PIVET improves the run time

dramatically. In addition to scaling up to the entire PMC OA
corpus, PIVET can analyze phenotypes individually and
automatically assign clinical relevance scores that are
independent of the other phenotypes in the corpus. Furthermore,
there was anecdotal evidence that the PIVET synonym
generation process was more discriminative and meaningful
than its PheKnow-Cloud counterpart. In the future, one goal is
to make PIVET available to researchers and clinicians. To this
end, we plan to deploy a live version of the phenotype parser
that users can interact with via a REST API and receive
phenotype JSON files in return. We are currently investigating
the best way to release PIVET for general use.

Possible Use Cases
For researchers developing models and algorithms to
automatically extract phenotypes from EHRs without
supervision, all phenotypes are possibly clinically significant
before they have been validated. We envision PIVET being
used by researchers to gain understanding into the phenotypes
they have extracted. Outside a machine learning setting, there
are several potential uses for PIVET. For example, a
pharmaceutical company may uncover a potentially interesting
pathway analysis or phenotype, and they can use PIVET to
identify all the articles that have been previously published on
the subject, as well as PIVET’s clinical validity determination
to decide if the pathway is worth pursuing and how much it can
be trusted. Similarly, in a healthcare setting, a clinician could
encounter an interesting group of patients and use PIVET to
explore what pathways have been discovered with relation the
set of patient characteristics. As in the pharmaceutical setting,
PIVET’s ability to deliver a clinical validity determination, as
well as generate a body of evidence in the form relevant articles,
can help clinicians reason about the patterns they encounter on
a daily basis.

Limitations
One possible way to improve PIVET is to include more
phenotypes when training the classifier. We continue to gather
additional domain expert annotated phenotypes to include in
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the framework. One limitation of this analysis was that all the
gold and silver standard phenotypes were combined with the
domain expert–labeled examples for classification purposes.
As we continue to gather more gold and silver phenotypes, we
plan to refine the classification process by incorporating this

“annotation quality” information. We also plan to test new sets
of features that incorporate interaction between the lift statistics
and to examine different metrics for evaluating the clinical
significance of candidate phenotypes.
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