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Abstract—One of the most formidable challenges electronic
health records (EHRs) pose for traditional analytics is the
inability to map directly (or reliably) to medical concepts or
phenotypes. Among other things, EHR-based phenotyping can
help identify and target patients for interventions and improve
real-time clinical decisions. Existing phenotyping approaches
often require labor-intensive supervision from medical experts
or do not focus on generating concise and diverse phenotypes.
Sparsity in phenotypes is key to making them interpretable and
useful to clinicians, while diversity allows clinicians to grasp the
main features of a patient population quickly.

In this paper, we introduce Granite, a diversified, sparse
nonnegative tensor factorization method to derive phenotypes
with limited human supervision. Compared to existing high-
throughput phenotyping techniques, Granite yields phenotypes
with much more distinct (non-overlapping) elements that can,
as an artifact, capture rare phenotypes. Moreover, the result-
ing concise phenotypes retain predictive powers comparable to
or surpassing existing dimensionality reduction techniques. We
evaluate Granite by comparing its resulting phenotypes with
those generated using state-of-the-art, high-throughput methods
on simulated as well as real EHR data. Our algorithm offers a
promising and novel data-driven solution to rapidly characterize,
predict, and manage a wide range of diseases.

Keywords—Feature extraction; Data mining; Health informa-
tion management; Computational phenotyping; Tensor factoriza-
tion; Electronic health records

I. INTRODUCTION

Computational phenotyping is the process of extracting
clinically relevant and interesting characteristics from a set
of clinical documentation, such as that which is recorded in
electronic health records (EHRs). Computational phenotyping
can be viewed as a form of dimensionality reduction, where
each phenotype forms a latent space [1]. Currently, there
are two approaches to deriving computational phenotypes,
which are: 1) rule-based methods derived by domain experts
and 2) automatic high-throughput methods, using machine
learning and data mining. In the first approach, panels of
experts define a single phenotype by a series of rules (see
[2] for an example of this method). While they are based on
consensus of knowledgeable individuals, rule-based methods
are limited in that they are laborious, iterative, and time-
consuming processes [3].

The second approach, which has gained traction in the past
few years [4] and is the focus of this work, automatically
extracts phenotypes in a high-throughput manner via machine
learning and data mining methods. Nonnegative tensor fac-
torization (NNTF) on tensors constructed from EHR data is

one way to perform high-throughput phenotyping. Tensors are
multidimensional arrays (an example of a tensor can be seen in
Figure 1), and tensor factorization utilizes multiway structure
and relationships to produce results in an unsupervised manner
that are potentially more interpretable than other methods.
Using NNTF to perform high-throughput phenotyping was
initially proposed through a method called Limestone, which
showed that NNTF could computationally extract candidate
phenotypes, a surprisingly large number of which were deemed
clinically relevant by medical experts [5]. However, one of
Limestone’s drawbacks is that it relies upon post-processing
to create more sparsity in the phenotypes. A subsequent
algorithm called Marble addressed this weakness in Limestone
by directly adding a global offset tensor and employing a new
inference method to encourage sparsity and stability in the
phenotypes [6]. However, the phenotypes themselves contain
less diversity (i.e., more overlap, see Figure 3b), which makes
them less useful to clinicians. Additionally, Marble’s sparsity
parameter must be set by the user manually rather than fit.

High-throughput phenotyping has also been achieved with
other machine learning and data mining techniques. [7] had
success applying weakly supervised matrix factorization to
clinical notes to generate phenotypes when the conditions were
known a priori, while others have used matrix factorization on
the micro (patient) and macro (population) to derive sparse
phenotypes from longitudinal EHR data [8]. Other methods
have delivered insights using topic modeling approaches.
Some topic modeling methods focused solely on diagnosis
codes [9] and others on heterogenous data (e.g., diagnosis,
laboratory results, clinical notes) [10]. Further investigations
have applied deep learning to raw EHR data with success,
but their methods require supervision, which is not always
available in data sources or may be too restrictive for a
phenotyping task [11]–[13]. While the work above delivers
insight into patient populations, only [8] focuses on creating
concise phenotypes, and none of the above generate diverse
phenotypes. For clinicians, diversity is important to discover
rare phenotypes in a patient population as well as in features
in predictive models. Moreover, diverse phenotypes are likely
easier to implement, as a clinician may find it difficult to rank-
order or apply phenotypes that have substantial overlap.

To answer this need, we introduce Granite, a novel NNTF
model to fit count data, that produces diverse, sparse, and
interpretable candidate phenotypes in an unsupervised manner.
Granite deviates from Marble [6] in several key aspects: (i)
it introduces a flexible penalized angular regularization term
on the factors to promote diversity, (ii) it utilizes a simplex
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Fig. 1: Overview of phenotyping via tensor decomposition process. A tensor is constructed of patient-level data is decomposed
into the weighted sum of rank-one tensors based on the minimization of an objective function. Each rank-one tensor, formed by
taking the outer product of factor vectors, constitutes a phenotype.

projection to calculate the factors and �2-regularization to
achieve better sparsity control, and (iii) it develops an effective
projected gradient descent-based approach to solve for the
interaction and bias factors simultaneously. The penalized
angular regularization term is flexible so users can encode
different amounts of diversity in each mode. We illustrate the
efficacy of our model on simulated data and real EHR data.

II. PRELIMINARIES AND RELATED WORK

This section introduces the preliminaries of matrix and
tensor decomposition and related phenotyping via tensor fac-
torization work. For the purposes of indexing a matrix A, we
denote the rth column as ar. The definition for the algebraic
operations used in the paper are provided below.

Definition 1: The Khatri-Rao product of two matrices A�
B of sizes IA×R and IB×R respectively, produces a matrix
Z of size IAIB×R such that Z = [a1 ⊗ b1 · · · aR ⊗ bR],
where ⊗ represents the Kronecker product. The Kronecker

product of two vectors a⊗ b = [a1b a2b · · · aIAb]T

Definition 2: The element-wise multiplication (and divi-
sion) of two same-sized matrices A ∗ B (A � B) produces
a matrix Z of the same size such that the element c�i = a�ib�i
(c�i = a�i/b�i) for all �i.

Definition 3: X is an N -way rank one tensor if it can be
written as the outer product of N vectors, a(1)◦a(2)◦· · ·◦a(N),

where each element x�i = xi1,i2,··· ,iN = a
(1)
i1

a
(2)
i2
· · · a(N)

iN
.

A. Tensor Factorization

A tensor is a generalization of a matrix to a multidi-
mensional array. Each element of a tensor represents an n-
way interaction (e.g., a third order tensor could capture the

relationship between a document, term, and author). Tensors
can be decomposed into a product of matrices or a combination
of matrices and smaller tensors. Tensor factorization utilizes
information in the multiway structure to produce factors that
are concise, potentially more interpretable (than matrix meth-
ods), even with relatively small amounts of observations [14].

Many tensor decomposition models exist and a complete
review of all the techniques is beyond the scope of the
paper. Instead, we focus on the CANDECOMP/PARAFAC
(CP) decomposition [15], [16], a common tensor factorization
model. CP decomposition factorizes the original tensor X as
a sum of R rank-one tensors and can be expressed as follows
(see Figure 1):

X ≈
R∑

r=1

λra
(1)
r ◦ . . . ◦ a(N)

r = �λ;A(1); . . . ;A(N)� (1)

The latter representation is shorthand notation for the weight
vector λ = [λ1 · · ·λR] and the factor matrix A(n) =

[a
(n)
1 · · ·a(n)R ]. Standard CP decomposition is formulated as

a least squares approximation, called CP alternating least
squares (CP-ALS), where data is assumed to follow a Gaus-
sian distribution, which makes it well-suited for continuous
data [14]. This assumption also results in simpler algorithms,
and the Alternating Direction Method of Multipliers (ADMM)
technique can be readily applied for distributed computation.
However, since the kind of EHR data considered in this work
is based on counts, a better match is the nonnegative CP
alternating Poisson regression (CP-APR) model developed in
[17], wherein the objective is to minimize the KL divergence
(i.e., data follows Poisson distribution).
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B. Phenotyping via Tensor Factorization

Figure 1 shows an example of the phenotyping process
using CP decomposition. The input to the model is a tensor
composed of three modes, patients, their diagnoses, and their
medications. The output is a weighted sum of rank-one tensors.
Each rank-one tensor is formed by taking the outer product of
three factor vectors that are found by solving an optimization
problem for each of the three modes. These factor vectors can
be organized into factor matrices by mode, which is depicted
in the lower part of Figure 1 (note: the weights, λ, have been
absorbed into the patient factor matrix). Factor matrices are a
convenient way to keep track of the modes in a decomposition.

Several NNTF models have been proposed to achieve high-
throughput computational phenotyping with minimal human
intervention [5], [6], [18]–[20]. Limestone obtains phenotypes
by decomposing the EHR tensor using the CP-APR algorithm
and post-processing the factors to remove probabilistically
unlikely elements [5]. Marble uses a bias tensor and a user-
specified sparsity threshold to produce sparse factors. The
factor matrices in Figure 1 come from a Marble decomposition
of a patient × diagnosis × medication tensor (the first five
phenotypes of this fit are shown in Figure 3). Summing
across columns gives the number of phenotypes that contain
a particular diagnosis, medication, or patient. For example,
the third row of the diagnosis factor matrix is “Major Symp-
toms, Abnormalities,” which appears in the majority of the
phenotypes. Domain experts were critical of the fact that
while Marble produces interpretable, concise phenotypes, there
was too much similarity across phenotypes. Granite addresses
this weakness through an angular penalty to increase intra-
phenotype diversity.

Other tensor factorization methods have been proposed.
Taking a different approach, [18] introduced a sparse Hierar-
chical Tucker Factorization, which uses a network of tensors.
The authors showed how it could be applied to extracting
diagnosis phenotypes out of EHR data using the hierarchical
structure in ICD-9 codes. While Granite does not incorporate
the hierarchy of the EHR record, it does capture the multiway
interaction between different types of patient interactions with
the medical system (e.g., diagnosis and medication). [19] im-
poses pairwise constraints on the vectors in the factor matrices,
but these constraints result in solutions with near orthogonal
vectors. While this approach provides high-level insights into a
patient population, it may smooth over more nuanced medical
realities. Granite encourages sparse and diverse phenotypes,
and it has the potential to isolate small, rare phenotypes. [20]
used a Bayesian NNTF approach to decompose an EHR count
tensor. However, unlike Granite, this model does not induce
sparsity and diversity in those phenotypes.

III. GRANITE: DIVERSITY-PROMOTING TENSOR

FACTORIZATION

Granite is a robust Poisson NNTF model that encourages
diverse and sparse latent factors. There are two main differ-
ences between Granite and Marble: (1) the introduction of
an angular penalty term and an �2 regularization term on
the signal factors substantially reduces overlaps between the
factors and (2) simplex projection on the factors, which, as we
will empirically demonstrate, results in better sparsity control.

A. Problem Formulation

Let X denote an I1 × I2 × · · · × IN tensor of count
(nonnegative integer) data and Z represent a same-sized tensor
where each element z�i contains the optimal Poisson parameters
of the observed tensor x�i. The Granite optimization problem
is defined as the following:

min(f(X )) ≡ min(
∑
�i

(z�i − x�i log z�i) (2)

+
β1

2

N∑
n=1

R∑
r=1

r∑
p=1

(max{0, (a
(n)
p )ᵀa(n)

r

||a(n)
p ||2||a(n)

r ||2
− θn})2

︸ ︷︷ ︸
angular regularization

(3)

+
β2

2

N∑
n=1

R∑
r=1

||a(n)
r ||22

︸ ︷︷ ︸
�2regularization

) (4)

s.t Z = �σ;u(1); · · · ;u(N)� + �λ;A(1); · · · ;A(N)� (5)

σ > 0, λr ≥ 0, ∀r
A(n) ∈ [0, 1]In×R,u(n) ∈ (0, 1]In×1, ∀n

||a(n)
r ||1 = ||u(n)||1 = 1, ∀n. (6)

Minimizing the objective function, f , in Equations (2, 3, 4)
results in the tensor Z. As shown in Equation (5), Z consists
of two terms: (i) rank-one bias tensor with positive weight and
factor vectors, σ and u(1), · · · ,u(1), and (ii) rank R interaction
tensor with nonnegative weight vector and factor matrices,
λ and A(1), · · · ,A(N). The rank R interaction tensor is
composed of the weighted sum of rank-one tensors. Each rank-
one tensor is constructed from N stochastic vectors (elements
sum to 1 and are nonnegative), which is consistent with the
existing CP Poisson tensor decompositions. We now discuss
key features of the Granite approach in more detail.

1) Promoting Intra-Phenotype Diversity: To encourage di-
versity between the rank-one tensors, Granite introduces a
penalty term to the objective function, shown in Equation
(3). The penalized angular regularization term reduces the
occurrence of overlapping elements in the interaction factor
matrices A(n) by penalizing decompositions where the factor
vectors are too correlated, measured by the cosine of the angle
between the vectors. Two vectors that are orthogonal will yield
a cosine similarity of 0, while two identical vectors will result
in a 1. This penalty is adapted from [21], which introduced
angular constraints to yield a structure-revealing data fusion
model that is robust to overfactoring. However, our model
relaxes the angular constraint and softly imposes diversity via
the regularization penalty. This results in the flexibility to allow
for overlapping phenotypes in the scenario where it truly exists.

It is also important to note that only vectors whose cosine
angle with other vectors are greater than θn are penalized.
Thus, our model does not necessarily encourage orthogonal
factor components unless θn = 0, which would result in similar
constraints as in [19]. Since θn is specific to each mode, our
model can impose different levels of diversity on each mode. A
user may want to focus on extracting a few, diverse diagnoses
but be less concerned with the similarity between the vectors
of the patient mode.

2) Promoting Inter-Phenotype Sparsity: Granite uses �2-
regularization (see Equation(4)) and simplex projection (see
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Section III-B2) to achieve sparsity. Experimentally, �2-
regularization term encourages the terms in the factor matrix
vectors to be small. In Granite, the terms are projected back
into feasible space using simplex projection onto a ball of
diameter s and then are �1 renormalized. Adjusting the size
of parameter s determines the number of non-zero terms in
the factor vectors. The �2-regularization term along with the
simplex projection act like an Elastic Net [22] regularization
to drive terms in the interaction tensors to 0.

3) Capturing the Baseline: The bias tensor, carried over
from the Marble framework, captures the general features of
the tensor and provides the stability necessary for elements
in the factor vectors to be driven to zero. The bias tensor
encapsulates the general characteristics of a patient population
while the R rank-one interaction tensors reflect the key features
of subgroups of the patient population.

B. Algorithm

1) Gradient: The Granite algorithm minimizes the objec-
tive function f to solve for the bias and interaction factor ma-
trices simultaneously through projected gradient descent. The
approach is different than Marble. Specifically, Marble com-
bines an alternating minimization approach, where each mode
has a multiplicative update with a sequential unconstrained
minimization approach. Not only have gradient descent ap-
proaches been shown to have faster convergence compared to
the alternating minimization approach [23], but the projected
gradient step avoids the problem of zeroing out components
too early in the multiplicative updates. Furthermore, solving for
the bias and interaction terms simultaneously avoids a potential
problem where subtracting the best rank-one approximation
may actually increase the tensor rank [24]. We note that
although recent work [25] obtained better speed and accuracy
of CP decomposition of Poisson data using bound-constrained
Newton methods, the angular regularization term results in
complications for second-order optimization.

Granite combines the interaction and bias vectors for each
factor matrix, such that for mode n, the combined factor matrix
is Â(n) =

[
A(n) u(n)

]
. Our preliminary experiments, which

are not shown due to space constraints, showed that absorbing
the weights, λ and σ, into one of the modes cut down on
computation time as well as increased the stability of the
results. Without loss of generality, the first mode is chosen

to be Â(1) =
[(

λA(1)
)

(σu(1))
]
.

Before we show the partial derivative for the factor vector

a
(n)
r , we introduce some notational conveniences. The objec-

tive function, f , can be represented as a scalar-valued function
of the parameter vector y [23], where y represents either the
vectorization of the factor matrices or the weights.

y =

⎡
⎢⎢⎢⎣

vec(λA(1) σu(1))
vec(A(2) u(2))

...

vec(A(N) u(N))

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

vec(Â(1))

vec(Â(2))
. . .

vec(Â(N))

⎤
⎥⎥⎦

Then, the gradients of the objective function f can be formed
by vectorizing the partial derivatives with respect to each

component of the parameter vector y:

∇f(y) =
[
vec

(
∂f

∂Â(1)

)
· · · vec

(
∂f

∂Â(N)

)]ᵀ

For notation purposes, we can represent the matricized form
of the tensor decomposition as:

�λ;A(1); · · · ;A(N)�(n) = λA(n)(A(−n))ᵀ

where

A(−n) ≡ A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

The partial derivatives with respect to the factor matrices
are the following:

∂f

∂a
(n)
r

= [1−X(n) � Z(n)]a
(−n)
r + β2 a(n)

r

+ β1

∑
p�=r

(
max{0, g(a(n)

r ,a(n)
p )}

) ∂g(a
(n)
r ,a

(n)
p )

∂a
(n)
r

(7)

∂f

∂u(n)
= [1−X(n) � Z(n)]u

(−n)
(8)

Further details about the derivation of the gradient are in the
appendix.

2) Projection: Projected gradient descent is used to ensure
the solution lies in the feasible space (i.e., non-negative or
positive). For the first mode, A(1) and u(1), the projection
function is simply the standard projection on the nonnegative
and positive orthant respectively:

PA(A(1)) = max{0,a(1)r }, (9)

Pu(u
(1)) = max{ε,u(1)}, ε positive & infinitesimal. (10)

Projection of the other bias vectors for the other modes occurs
identically to Equation 10.

Projection for the interaction factor components a
(g)
r other

than the first mode uses the Euclidean projection onto the �1-
ball of diameter s [26]. When s = 1, this is projection onto the
probabilistic (or canonical) simplex. However, Granite takes
advantage of the properties of the simplex projection and
decreases s to a number less than 1, which results in even more
sparse solutions. The subsequent result is then renormalized to
meet the stochastic constraints. The detailed Granite algorithm
is presented in Algorithm 1, with further details are located in
the appendix.

3) Membership of Existing Factors: Granite also computes
a membership vector for a new axis, where the other modes are
fixed with the already learned factors. The membership vector
is defined as the convex combination of existing tensor factors,
where the rth element denotes the probability the entity exhibits
characteristics consistent with the rth tensor factors. For ex-
ample, new patients can be projected onto the computational
phenotypes to obtain a phenotype membership vector where
each element represents the probability the patient has the
phenotype. It is important to note that the membership vector
is not equivalent to the factor matrix because the stochastic
constraints are on the row and not the column. The ability to
take new patients and obtain their phenotype membership can
be used in several ways. For one, predictive models can be
trained on phenotypes associated with a subset of population
and then applied to other subsets.
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Algorithm 1: Granite algorithm

Data: X , R, s,θ
Result: �σ;u(1); · · · ;u(N)�, �λ;A(1); · · · ;A(N)�
for k = 1, 2, · · · ,K do

# Update parameters Â(n)

Calculate ∇f(Â(n)) for n = 2, . . . , N using Eqs.
(7, 8)
#Simplex projection with s

Update Â(n) for n = 2, . . . , N with projected
gradient descent line search and simplex projection

# Update parameter Â(1)

Calculate ∇f(Â(1)) using Eqs. (7, 8)

Update Â(1) with gradient descent and nonnegative
projection Eqs. (9, 10)
# Standard stopping criteria
if ||y+ − y||F < convergenceTol then

break
end

end

Without loss of generality, we assume the 1st mode is the
new axis (e.g., patients). Given a new tensor X̃ , we want
to find Ã(1), ũ(1) that provides the best approximation given
A(2), · · · ,A(N) are fixed. We observe that this is almost
equivalent to gradient descent where the partial derivatives of
the other factors are zero except that the membership vector
is obtained by normalizing the entries of Ã(1) across the row
instead of the columns. To solve for the optimal Ã(1), ũ(1), the
same projected gradient descent approach described in Section
III-B2 is taken with the projection onto the nonnegative orthant
and the angular and �2 regularization penalties set to zero
(minimizing the KL divergence only). Once Ã(1) is calculated,
the rows are normalized to sum to 1. A detailed algorithm is
provided in the appendix.

IV. SIMULATION RESULTS

In this section, we evaluate Granite’s performance on
simulated tensors where the actual factors are known, which
allows us to demonstrate the recovery properties of Granite in
a controlled environment and explore the effects of algorithmic
choices. Specifically, we consider a third-order tensor of size
40 × 20 × 20 with rank of 5 (i.e., R = 5). We generate
the model Z = �σ;u(1); · · · ;u(N)� + �λ;A(1); · · · ;A(N)�.
Both the weights and bias factor vectors are straightforward,
as the sampling occurs in the nonnegative and positive orthants
respectively. We simulate the vectors in each interaction factor
matrix A(n) by sampling non-zero element indices according
to a specified sparsity pattern. We then randomly sample along
the simplex for the non-zero indices, rejecting vectors that are
too similar to those already generated. Finally, each tensor
element xijk is sampled from the Poisson distribution with
the parameter set to zijk.

Our algorithm is evaluated on 50 simulated tensors where
we set the cosine similarity to .3 and β1 = 1000 and varied β2

for each run. In addition, we fixed the sparsity parameter to
project onto the simplex (s = 1) for the first mode and s = .95
for the second and third modes. The results are evaluated using

(a) Similarity

(b) Non-zero Ratio

Fig. 2: Similarity (top) and non-zero ratio (bottom) between
the fit latent factors, calculated by Granite and Marble, and
the true latent factors for the second and third mode. The
boxes represent Granite’s performance, and the median and
the the 25% and 75% percentiles of Marble’s performance are
designated by the blue and red dotted lines, respectively.

1) the non-zero ratio between the computed solution and the
actual solution and 2) the cosine angle between vectors in the
simulated and fit tensors. The cosine angle between the two
vectors, a component of the factor match score [17], is used to
quantify the similarity between the computed solution and the
actual representation. We use the Hungarian method to com-
pute the optimal pairing between each approximated rank-one
tensor and the corresponding “true” rank-one representation.

Figure 2a shows a boxplot of the similarity scores between
the estimated latent factors and the true latent factors for the
second and third mode, where the blue line represents the
median performance of Marble and the red dotted lines are
the 25% and 75% percentiles of Marble’s similarity scores.
Overall, Granite is able to recover the true latent representation
with similarity scores near 1, which surpasses the median sim-
ilarity scores of Marble.Figure 2b illustrates the non-zero ratio
(i.e., (number of non-zeros in fitted factor vectors)/(number of
non-zeros in actual factor vectors)) with the blue line denoting
the median non-zero ratio of Marble. Granite’s non-zero ratio
improves as β2 increases and the algorithm is able to recover
the original sparsity pattern. While Marble’s non-zero ratio
is lower overall, it is below the original sparsity pattern and
Granite outperforms Marble in terms of recovering the original
tensor. Thus, Granite is able to capture the simulated latent
factors while maintaining sparse solutions.

V. EMPIRICAL RESULTS

A. Dataset Description

The Synthetic Derivative (SD) is a large, de-identified
Electronic Medical Record (EMR) database at the Vanderbilt
University Medical Center (VUMC) [27]. Among other pieces
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(a) The top 5 Granite phenotypes.

(b) The top 5 Marble phenotypes.

Fig. 3: The Granite and Marble phenotypes with the highest weights (i.e., largest λis) for parameters listed in Table I. Capitalized
blue items are diagnoses, and lower case orange items are medications. Numbers indicate phenotypes where item occurs.

of patient information, the SD contains inpatient and outpatient
billing and medication codes of nearly 2 million patients. In the
work of [28], domain experts manually developed algorithms
that use these codes to identify case and control statuses for
patients within the SD for certain conditions.

In this work, we focus on the patients identified as case and
controls for resistant hypertension. For each patient in the ten-
sor, we include five years of data from the last diagnosis they
received. We construct the count tensor from medication and
diagnosis records. Since individual International Classification
of Diseases (ICD-9) diagnosis codes capture information at
a fine-grained level specialized for billing purposes, we use
CMS’s Hierarchical Condition Categories (HCC) to group
the diagnosis codes.1 Additionally, we aggregate medications
based on Medical Subject Headings (MeSH) pharmacological
actions provided by the RxClass RESTful API, a product of
the US National Library of Medicine.2 It is important to note
that a medication may have several uses and, therefore, belong
to multiple categories. The resulting tensor is 1394 patients by
149 medications by 177 diagnosis and thus has over 36 million
cells. Of these patients, 33% of the patients were labeled as
resistant hypertension cases and 67% were labeled as controls.

B. Results

We evaluate Granite against other dimensionality reduction
techniques in the following three ways: 1) we quantitatively
compare Granite-generated phenotypes with Marble-generated
phenotypes to demonstrate the desirable qualities of Granite,
2) we use annotations from a domain expert to analyze
the clinical relevance of the phenotypes, and 3) we use the

1http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
2https://rxnav.nlm.nih.gov/RxClassAPIs.html

Fig. 4: Cosine similarity within factor matrices for Granite and
Marble, run with parameter values listed in Table I (counts are
shown on a log scale).

phenotypes generated in an unsupervised manner as features
in a supervised classification task to demonstrate the predictive
power of Granite.

First, we compare phenotypes generated with Granite with
those generated by Marble. Using a grid search, we chose the
parameter values listed in Table I for all described results.
Figure 3 shows the Granite- (top) and Marble-generated phe-
notypes (bottom) associated with the largest weights, λ. The
numbers in parentheses next to the items indicate in which
phenotypes the items appear. For example, “Other infectious
diseases” is labelled “(1, 3, 5)” because it is repeated in
Phenotypes 1, 3, and 5 in the Marble-generated phenotypes.
Overall, Granite produces more diverse phenotypes, which
is illustrated in Figure 4. Using a log scale for the counts,
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TABLE I: Values of experimental parameters.

Method Parameters

Granite R = 30, s = [1, .99, .99], θ = [1, .35, .35], β1 = 10000, β2 = 1000
Marble R = 30, α = 10000, γ = [0, .15, .15]

Figure 4 shows histograms of the cosine similarity scores
between vectors by mode. Here, the angular penalty term for
the Granite decomposition was set to .35, and in the histogram,
it can be seen that the vectors in the Granite factor matrices
have cosine scores between 0 (completely perpendicular) and
.4 (a small number of common terms) in the diagnosis mode
and 0 and .25 in the medication mode. Note that, since the
angular penalty was set to 1 for the patient mode, there is
less diversity in this mode, which may be preferable from a
clinical perspective. In contrast, the cosine scores for Marble-
generated factor vectors are more widely spread out, especially
in the diagnosis and procedure mode. This indicates there is
more overlap using Marble.

Experimentally we found Granite-generated phenotypes
can cover a range of sizes for patient groups. Table III
shows the phenotypes extracted using Granite, where * denotes
features that were related to case patients and the † denotes
features related to control patients according to our predictive
model (discussed later in this section). Most phenotypes cap-
ture small parts of the population, demonstrating the potential
for our algorithm to uncover rare phenotypes.

Next, we examine the clinical relevance of the generated
phenotypes. A domain expert graciously annotated the Granite-
and Marble-generated phenotypes as “clinically relevant”,
“possibly clinically relevant”, and “not clinically relevant.”
Overall, Granite generated fewer clinically relevant phenotypes
than Marble, but we found that the clinical relevance of
Granite-generated phenotypes was highly correlated with the
weight associated with the phenotype (i.e., higher λr means
more likely to be relevant). On the other hand, Marble-
generated phenotypes did not exhibit this relationship. Figure 5
shows the Receiver Operator Curve based on using the λ
weight associated with the phenotype to classify that pheno-
type as clinically meaningful or not. This analysis suggests
there is a trade-off between diversity and clinical relevance.
By encouraging diverse solutions through the angular penalty
term, Granite is more likely to find less relevant phenotypes
that correspond to smaller weights, and in practice these
phenotypes can be discarded. Moreover, the discriminative
power of Granite and its ability to generate sparse and diverse
phenotypes make it a useful tool for clinicians.

Finally, we compare Granite’s predictive performance to
Marble, CP-APR with nonnegative constraints, CP-ALS with
nonnegative constraints, and Nonnegative Matrix Factoriza-
tion (NMF) using a classification task to predict resistant
hypertension patients. It is important to note that the derived
features for these methods are obtained through unsupervised
learning (i.e., phenotypes are not adapted to fit the classi-
fication model). For the five methods, we fix the number
of computational phenotypes at thirty (R = 30), based on
an analysis of the log-likelihood, and derive computational
phenotypes from the constructed tensor. We performed a grid
search on parameters for Granite and Marble in order to

Fig. 5: ROC for Granite and Marble where task was to predict
which phenotypes are clinically significant based on λ weight.

(a) Granite-generated phenotypes

(b) CP-APR-generated phenotypes

Fig. 6: Heatmap of non-zero elements in factors of diagnosis
(dark blue) and medication (dark orange) modes generated by
Granite and CP-APR phenotypes.

obtain a good tradeoff between sparsity and diversity. We then
train �1-regularized logistic regression models on phenotypes
from each of the aforementioned methods. Note for NMF,
phenotypes are derived from a matricized version of the tensor
(i.e., W are the features where X ≈ WHᵀ). We ran the
model on five 80-20 train-test splits, generated using stratified
random sampling, with the features derived from the training
dataset only. For CP-ALS, CP-APR, Marble, and Granite, the
phenotype membership matrix is the feature matrix, and for
NMF, the patient loadings matrix is the feature matrix. The
optimal LASSO parameter for the regression model is learned
via 10-fold cross-validation in the SD population.

Table II shows the area under the receiver operating charac-
teristic curve (AUC) for the different methods and the average
number of non-zero entries in the diagnosis and medication
modes per phenotype. Granite has a higher predictive perfor-
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Fig. 7: Cumulative gains chart for predicting hypertension case
and controls.

TABLE II: AUC for classification task (run with parameter
values listed in Table I).

Method AUC Std. Dev. Non-zeros / Phenotype

Granite 0.7298 0.0243 4.6300 (w/o bias)
Marble 0.7197 0.0190 5.3330 (w/o bias)
CP-APR 0.7405 0.0117 111.0000
CP-ALS 0.6765 0.0234 113.1522
NMF 0.7203 0.0315 NA

mance than CP-ALS, Marble, and NMF. The low performance
of CP-ALS might indicate that the Poisson assumption is im-
portant. Since CP-APR is not restricted by sparsity constraints,
it is able to capture more of the population and unsurprisingly
has the best AUC. However, CP-APR-generated phenotypes
are not sparse. Figure 6 shows the number of non-zero terms
in the medication and diagnosis modes for Granite-generated
phenotypes (Figure 6a) and CP-APR-generated phenotypes
(Figure 6b). From a qualitative perspective, the large number of
medication and diagnoses codes per phenotype (111 codes on
average) of CP-APR makes the generated phenotypes harder to
interpret than the substantially more concise Granite-generated
phenotypes (4.6300 codes on average). Therefore, we can
conclude Granite phenotypes are discriminative, sparse, and
diverse, which we believe makes this method more attractive
than its competitors.

To look more closely at the important features in the
classification task, we return to Table III where features that
are most predictive of cases and controls are indicated by *
and †, respectively. It is interesting to note that in addition
to “hypertension” appearing in the most predictive of features
of case patients (Phenotype 9), comorbidities of hypertension,
like diabetes (Phenotype 23) [29] and angina pectoris (Pheno-
type 21) [30], also appear to be predictive. Figure 7 shows a
cumulative gains chart of Granite, Marble, and CP-APR. All
three methods perform similarly on smaller proportions of the
population, but, as the percent of patients classified increases,
Granite is more discriminative. Granite’s diverse phenotypes
are expected to be more useful to clinicians because it should
reduce the time needed to sift through Marble’s repetitive
phenotypes and CP-APR’s and CP-ALS’s lengthy phenotypes
to discover clinically interesting features of a population.

VI. CONCLUSION

This paper presented Granite, a diverse and sparse Poisson
nonnegative model to fit EHR count data. Our algorithm pro-
vides an unsupervised methodology to achieve high-throughput
phenotyping. The model generates multiple concise and inter-
pretable computational phenotypes with minimal supervision,
but also yields high diversity factors with minimal overlapping
elements between the phenotypes.

The experimental results on simulated data demonstrate
the conciseness, interpretability, diversity, and predictive power
of Granite-derived phenotypes. Granite can also be used to
rapidly characterize, predict, and manage a large number of di-
verse diseases, thereby promising a novel, data-driven solution
that can benefit the entire population. Despite its merits, there
are certain limitations to Granite. In particular, one drawback is
Granite, though it was designed as such, does not incorporate
any supervision. In the future, we plan to address this issue
by using weak supervision provided by outside data sources to
guide the factorization to more clinically relevant phenotypes.

VII. APPENDIX

A. Partial derivatives of the objective function

The computation of the partial derivative for the factor

vectors a
(n)
r is achieved as follows. It is useful to note that

each element in the approximation tensor, z�i, can be rewritten
as follows:

z�i = σu
(1)
i1

u
(2)
i2
· · ·u(N)

iN
+

R∑
r=1

λra
(1)
i1r

a
(2)
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+
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r=1
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For notation purposes, we can represent the matricized form
of the tensor decomposition as:

�λ;A(1); · · · ;A(N)�(n) = λA(n)(A(−n))ᵀ

where

A(−n) ≡ A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

We first compute the gradient for the angular regularization
term. We denote the cosine similarity penalty between two

vectors using the function g(a
(n)
r ,a

(n)
p ). For convenience, we

drop the n, r terms and introduce b = a
(n)
p for p 
= r and

let g(a,b) denote the cosine similarity between two vectors
a, b, where g(a,b) = ( bᵀa

||b||2||a||2 − θn). The gradient for the

angular term is the following:

∂g(a,b)

∂a
=

b||a||22− < b,a > aᵀ

||b||2||a||32
∂(max{0, g(a,b)})2

∂a
= (max{0, g(a,b))})∂g(a,b)

∂a

The partial derivative of the KL divergence step with respect

to a
(n)
r is straightforward:

∂
∑

(z�i − x�i log z�i)

∂a
= [1−X(n) � Z(n)]a

(−n)
r
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TABLE III: Granite phenotypes ranked by λr, * denotes the phenotypes most predictive of being a hypertension case, † denotes
the phenotypes most predictive of being a control. Diagnoses are orange (capitalized), and medications are blue (uncapitalized).

Phenotype 1 (15.43% of Patients)

Legally Blind

Major Symptoms, Abnormalities

Polyneuropathy

Cerebrovascular Disease Late Effects, Unspecified

Multiple Sclerosis

anticonvulsants

bronchodilators

anxiolytics, sedatives, and hypnotics

Phenotype 2 (10.76% of Patients)

Specified Heart Arrhythmias

Major Symptoms, Abnormalities

Heart Infection/Inflammation, Except Rheumatic

diuretics

beta-adrenergic blocking agents

antihyperlipidemic agents

Phenotype 3 (5.92% of Patients)

Other Endocrine/Metabolic/Nutritional Disorders

Severe Hematological Disorders

vitamins

Phenotype 4 (3.41% of Patients)

Rheumatoid Arthritis and Inflammatory Connective Tissue Disease

antirheumatics

Phenotype 5 (7.71% of Patients)

Other Endocrine/Metabolic/Nutritional Disorders

antihyperlipidemic agents

Phenotype 6 (0.72% of Patients)*

Lymphoma and Other Cancers

antiviral agents

Phenotype 7 (0.54% of Patients)

Severe Hematological Disorders

antiemetic/antivertigo agents

Phenotype 8 (2.24% of Patients)

Major Symptoms, Abnormalities

antifungals

Phenotype 9 (3.5% of Patients)*

Cardio-Respiratory Failure and Shock

Hypertension

antiarrhythmic agents

Phenotype 10 (0.36% of Patients)

Major Symptoms, Abnormalities

Other Infectious Diseases

antituberculosis agents

Phenotype 11 (0.54% of Patients)*

Opportunistic Infections

immunosuppressive agents

antiviral agents

antidepressants

Phenotype 12 (3.86% of Patients)

Major Symptoms, Abnormalities

Disorders of the Vertebrae and Spinal Discs

prolactin inhibitors

antiarrhythmic agents

Phenotype 13 (2.15% of Patients)

Diabetes with No or Unspecified Complications

bronchodilators

laxatives

antihistamines

Phenotype 14 (1.35% of Patients)

Other Endocrine/Metabolic/Nutritional Disorders

antiviral agents

Phenotype 15 (0.45% of Patients)†

Major Head Injury

anxiolytics, sedatives, and hypnotics

antiarrhythmic agents

Phenotype 16 (0.54% of Patients)†

Colorectal, Bladder, and Other Cancers

otic preparations

adrenal cortical steroids

Phenotype 17 (8.61% of Patients)

Pelvic Inflammatory Disease and Other Specified Female Genital Disorders

Osteoporosis and Other Bone/Cartilage Disorders

bronchodilators

anticonvulsants

vitamins

laxatives

antacids

Phenotype 18 (1.08% of Patients)

Severe Hematological Disorders

antiviral agents

antiparkinson agents

analgesics

GI stimulants

anticoagulants

chelating agents

antimetabolites

Phenotype 19 (0.72% of Patients)

Lung and Other Severe Cancers

mouth and throat products

Phenotype 20 (0.45% of Patients)†

Quadriplegia

mouth and throat products

Phenotype 21 (9.42% of Patients)*

Angina Pectoris/Old Myocardial Infarction

antianginal agents

diuretics

antiplatelet agents

nutraceutical products

Phenotype 22 (16.5% of Patients)

Precerebral Arterial Occlusion and Transient Cerebral Ischemia

Coronary Atherosclerosis/Other Chronic Ischemic Heart Disease

Urinary Tract Infection

Coagulation Defects and Other Specified Hematological Disorders

Major Symptoms, Abnormalities

Hypertension

Pressure Pre-Ulcer Skin Changes or Unspecified Stage

Other Endocrine/Metabolic/Nutritional Disorders

hormones/antineoplastics

tetracyclines

immunostimulants

antihyperlipidemic agents

Phenotype 23 (0.72% of Patients)*

Diabetes with No or Unspecified Complications

nutraceutical products

Phenotype 24 (11.03% of Patients)

Uncompleted Pregnancy With Complications

Drug/Alcohol Psychosis

Rheumatoid Arthritis and Inflammatory Connective Tissue Disease

Attention Deficit Disorder

macrolide derivatives

ophthalmic preparations

Phenotype 25 (9.15% of Patients)†

Traumatic Amputation

ophthalmic preparations

local injectable anesthetics

miscellaneous uncategorized agents

Phenotype 26 (7.89% of Patients)

Hemiplegia/Hemiparesis

hormones/antineoplastics

immunostimulants

anticonvulsants

Phenotype 28 (0.09% of Patients)

Severe Hematological Disorders

uterotonic agents

Phenotype 29 (1.17% of Patients)†

Other Eye Disorders

Poisonings and Allergic Reactions

Other Infectious Diseases

Other Endocrine/Metabolic/Nutritional Disorders

medical gas

Phenotype 30 (0.9% of Patients)

Acute Myocardial Infarction

antidiarrheals

B. Projected Gradient Descent Line Search

Projection for the interaction factor components a
(g)
r uses

the Euclidean projection onto the �1-ball of diameter s [26]
and is described by the following optimization problem:

min
a

1

2
||a− b||22 s.t.

∑
ai = s, ai ≥ 0. (11)

An appropriate step size, t, is selected using backtracking
line search by iteratively shrinking the step size by β̂line to
ensure the following condition is met:

f(PΩ(y − t∇f(y))) < f(y).

Note that Equation (11) is the projection function, PΩ(·), in
Algorithm 2. Although computing the objective function can

Algorithm 2: Projected Gradient Descent Line Search

t = tinit # Initialize the step size
Ft(y) =

1
t (y − PΩ(y − t∇f(y))

while f(y − tFt(y)) > f(y) do
t = β̂linet
Ft(y) =

1
t (y − PΩ(y − t∇f(y)))

end
y+ = PΩ(y − t∇f(y))

be expensive, this ensures that our algorithm converges to a
local minimum based on the standard convergence analysis of
the proximal gradient method.
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Algorithm 3: Membership Calculation

Randomly initialize B
for k = 1, 2, · · · , kmax do

Calculate ∇f(B)
Update B+ = PB(B− t∇f(B))
if |f(B+)− f(B)| < convergenceTol then

break
end

end
Â(1) = normalize rows(B)

C. Membership of Existing Factors

Algorithm 3 details the calculation of the membership
vector, B. We define B = αmI

[
Ã(1) ũ(1)

]
using the

factor matrices with a vector αm, where m is the number
of dimensions in the first axis.
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