
gamAID: Greedy CP Tensor Decomposition for Supervised EHR-based
Disease Trajectory Differentiation

Jette Henderson1 Joyce Ho2 Joydeep Ghosh3

Abstract— We propose gamAID, an exploratory, supervised
nonnegative tensor factorization method that iteratively extracts
phenotypes from tensors constructed from medical count data.
Using data from diabetic patients who later on get diagnosed
with chronic kidney disorder (CKD) as well as diabetic patients
who do not receive a CKD diagnosis, we demonstrate the
potential of gamAID to discover phenotypes that characterize
patients who are at risk for developing a disease.

I. INTRODUCTION

Diabetes can cause kidney damage with varying degrees
of severity. This damage, called diabetic nephropathy, is a
type of Chronic Kidney Disorder (CKD) and is found in
23% of diabetes patients. The presence of both CKD and
diabetes in a patient can result in complications of care.
For example, reduced kidney function inhibits the amount of
insulin the kidneys can remove from a person’s blood, which
makes the process of controlling a diabetic patient’s glycemic
levels more challenging. Being able to identify early signs
of CKD in diabetes patients can help mitigate complications
of simultaneously managing diabetes and CKD [1].

In this work, we propose gamAID, an exploratory, su-
pervised method for separating diabetes patients into two
groups based on their risk of developing diabetic nephropa-
thy. Specifically, gamAID greedily extracts and accumulates
phenotypes for each group using nonnegative tensor de-
composition on patient data contained in Electronic Health
Records (EHRs). While we apply this framework specifically
to patients with diabetes, gamAID is general enough to be
applied to other sets of conditions. We use gamAID to
explore the feasibility of identifying a patient group that
diverges from a population of similarly ill patients and
compare our method to Fisher’s Linear Discriminant Anal-
ysis, another supervised method. Our results demonstrate
the potential of gamAID to characterize patients who are
risk of developing diabetic nephropathy. More broadly, it
highlights the advantages of tensor-based analysis vs. vector-
based representations of complex medical data.

II. PRELIMINARIES

Our method uses nonnegative tensor decomposition to
greedily discover phenotypes within a population of patients
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represented by their EHRs. gamAID is supervised in that
it performs tensor factorization based on the future CKD
status of the patient. First, we briefly describe tensors and the
process of decomposing them but refer the reader to [2] for a
more thorough introduction. A tensor is an n-way or n-mode
array that is used to represent n-dimensional relationships.
In this exploratory work, we focus on 3-mode tensors, with
patients, diagnoses, and procedures as our three modes.
Each element captures the multidimensional relationship of
the number of times a patient has experienced a medical
diagnosis and procedure in a given period of time. We note
that our work can be extended to higher dimensions (e.g.,
patient, diagnosis, procedure, and time).

Much like, but not identical to matrices and their fac-
torizations, tensors can be decomposed or factored into a
product of matrices or a combination of matrices and smaller
tensors or as the sum of tensors. There are multiple tensor
decomposition models, but we focus on the CANDECOMP
/ PARAFAC (CP) decomposition [3], [4].We first define the
notion of a rank one tensor.

Definition 1: A tensor W is an N -way rank one tensor
if it can be written as the outer product of N vectors, a(1) ◦
a(2) ◦ · · · ◦ a(N), where each element w~i = xi1,i2,··· ,iN =

a
(1)
i1
a
(2)
i2
· · · a(N)

iN
.

CP decomposition factorizes the original tensor X as a sum
of R rank one tensors and can be expressed as follows:

X ≈
R∑

r=1

λra
(1)
r ◦ . . . ◦ a(N)

r = Jλ;A(1); . . . ;A(N)K. (1)

The representation Jλ;A(1); . . . ;A(N)K is shorthand nota-
tion with the weight vector λ = [λ1 · · ·λR] and the factor
matrix A(n) = [a

(n)
1 · · ·a

(n)
R ], where ar denotes the rth

column of A(n). CP decompositions are usually fit using
a loss function that makes assumptions about the underlying
distribution of the data contained in the tensor (e.g., Gaussian
or Poisson). In general, tensor factorization utilizes informa-
tion in the multiway structure to produce factors that are
concise and potentially more interpretable, and it is also able
to identify components even with relatively small amounts
of observations [2].

When CP decomposition is applied to Electronic Health
Records (EHRs), each rank one tensor can be thought of
a medical phenotype, where a phenotype is a set of clini-
cally meaningful characteristics used to describe a group of
patients. Using a Poisson assumption, Ho et al. showed CP
decomposition has the potential to produce clinically relevant
phenotypes in a high-throughput, unsupervised manner [5],
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[6]. Others have used a Gaussian assumption on the data to
decompose tensors into sets of rank one phenotypes, which
can be solved using an alternating least squares approach.
For example, Wang et al. used a CP decomposition fit on
mean–squared loss and orthogonality constraints to produce
diverse sets of phenotypes [7]. We draw on the work of [5],
[6] because it uses a Poisson assumption appropriate to count
data (e.g., diagnosis/procedure counts) and carries out the
decomposition via the non–negative CP alternating Poisson
regression (CP-APR) model developed in [8]. However,
instead of fitting all R rank-one tensors simultaneously, we
build up the decomposition by fitting rank one tensors one
at a time, setting them as constants, and then fitting the next
rank one tensor until we have reached the desired rank.

III. GAMAID

Our algorithm, Greedy Angular Multiway Array Iterative
Decomposition (gamAID), is an exploratory, supervised non–
negative tensor factorization method for uncovering dis-
tinctive phenotypes that can differentiate patients with or
without a disease. Our goal is to accumulate computational
phenotypes that are representative of each patient class that
are “different” from phenotypes discovered in the other
patient class. Given the binary labels representing whether
or not a diabetic patient is diagnosed with CKD in the year
following the observed records, we construct three types of
tensors to which gamAID will fit decompositions. The first
tensor, X (01) contains EHR count data from both classes
of patients. We then split X (01) along the patient mode to
form X (0) and X (1) so that they only count data specific to
the class in question (i.e., class 0 or class 1). gamAID fits
one of three tensors Z(01), Z(0), and Z(1) based on what
step it is in. These fit tensors are the same size as their
respective observation tensor, and each element z~i contains
the optimal Poisson parameter for the observed tensor x~i.
We constrain the fit tensors to share all but one of the same
factor vectors along the non–patient factors (i.e., diagnosis,
procedure). Thus, the discovered phenotypes can be used to
uncover higher–order interactions, which can then be used
as distinguishing characteristics for improved prediction and
understanding. Given the patient classes are similar to one
another, the decomposition Z(01), fit on X (01), captures
some features held in common between the two classes.

gamAID introduces the use of an angular constraint to
encourage diversity between factor vectors of each mode by
penalizing any pair of vectors that are “similar” to previous
discovered phenotypes. The algorithm represents similarity
between two factors via the cosine similarity, aᵀb

||a||2||b||2 .
Under this measure, two vectors a,b that are orthogonal will
have a score of 0, while two exact same vectors will have a
score of 1. We add this angular regularization term, Equation
(3), to the objective function of a count tensor decomposition
which uses KL divergence, Equation (2). It is important to
note that since X (01) consists of count data, it is not possible
to standardize the tensor by subtracting off the mean and
dividing by the standard deviation. Thus, a bias term, u(n),
is added in Equation (4) to capture the baseline state of

the data. Each factor matrix A(n) can be projected onto a
sparse simplex denoted by s (shown in Equation (5)), which
provides a tunable parameter to alter the number of elements
in the resulting factors. The optimization problem that is
solved for each separate tensor X (d), where d ∈ {0, 1, 01},
is the following:

f(Z(d)) = min(
∑
~i

(z~i(d) − x~i(d) log z~i(d)) (2)

+
β

2

N∑
n=1

R∑
r=1

r∑
p=1

(
(a

(n)
p )ᵀa

(n)
r

||a(n)p ||2||a(n)r ||2
)2 (3)

s.t Z(d) = Jσ;u(1); · · · ;u(N)K + Jλ;A(1); · · · ;A(N)K
(4)

||a(n)r ||1 = s, 0 < s ≤ 1, ∀n (5)

||u(n)||1 = 1, ∀n. (6)

This is a complex objective that cannot be solved exactly.
Instead, gamAID uses a greedy algorithm to iteratively build
up a tensor decomposition of size R by fitting rank one
tensors only using one class at a time. The algorithm fits
a rank one tensor that is “best fit” relative to the class
and the rank-one tensors we have already accumulated. The
first step is to fit the best rank one tensor Z(01) to X (01)

based on the optimization problem described above (Z(01)

= λ1a
(1)
1 ◦ a(2)1 ◦ a(3)1 ). We then choose one class, X (1),

and minimize the optimization problem with respect to X (1)

to fit a rank-two decomposition, with the first rank one
tensor set to the one learned in the previous steps (Z(1) =

λ1a
(1)
1 ◦a

(2)
1 ◦a

(3)
1 +λ2a

(1)
2 ◦a

(2)
2 ◦a

(3)
2 ). gamAID then switches

classes and minimizes the optimization problem with respect
to X (0) to fit a rank-three decomposition based on the two
rank one tensors learned previously. gamAID continues to
switch classes until the user-specified number of phenotypes
R. The patient mode for each class needs to be refit each time
as the membership to phenotypes might be redistributed for a
given patient, given a new set of phenotypes. The pseudocode
for the algorithm is shown in Algorithm 1.

At the end of the gamAID process, the diagnosis and
procedure modes are fixed and the combined patient factor
matrix is learned by minimizing the objective function once
more. The final step is to normalize across the rows of the
patient factor matrix. We can interpret the normalized values
as a patient’s membership to or loading on a phenotype.

IV. DATA

We demonstrate the potential of the gamAID framework
on the publicly available CMS Linkable 2008-2010 Medicare
Data Entrepreneurs’ Synthetic Public Use File (DE-SynPUF)
that the Centers for Medicare and Medicaid Services (CMS)
provides.1 It contains claim records spanning 3 years of data.
The records have been synthesized from 5% of the 2008
Medicare population to protect the privacy of the patients.

1The dataset can be downloaded at https://www.cms.
gov/Research-Statistics-Data-and-Systems/
Downloadable-Public-Use-Files/SynPUFs/index.html
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Algorithm 1: Pseudocode for the gamAID algorithm
Data: X ,X (1),X (0),K
Result: Jσ;u(1); · · · ;u(N)K, Jλ;A(1);A(2);A(3)K
for r = 1, 2, · · · , R do

if r == 1 then
Solve the optimization problem (Equations (2)-
(6)) for X (01), the tensor corresponding to both
class 0 and class 1 patients

end
if r is even then

Solve the optimization problem (Equations (2)-
(6)) for X (1), the tensor corresponding to class
1 patients

end
if r is odd and r > 1 then

Solve the optimization problem (Equations (2)-
(6)) for X (0), the tensor corresponding to class
0 patients

end
end

DE-SynPUF contains inpatient, outpatient, carrier, and pre-
scription drug event claims in addition to the beneficiary files.
Although the relationships between some of the variables
have been altered to minimize re-identification risk, due to
the very large size and coverage of the data, the conclusions
obtained by population level models are expected to closely
represent those obtained from the unaltered dataset, and thus
still provided very valuable clinical insights.

We extracted two classes based on values for different
disease flags in the Beneficiary file. Class 1 consists of
patients flagged as diabetic in 2009 and 2010, who did not
have a chronic kidney disease (CKD) flag in 2009 but did
have a CKD flag in 2010. We also refer to this class as
“diabetes-CKD.” Class 0, which we also refer to as “diabetes
only,” consists of patients with a diabetes flag in 2009 and
2010 and no CKD flag in 2009 or 2010.

The extracted cohort consists of 1, 492 diabetes-CKD
patients and 1, 625 diabetes-only patients. Figure 1 shows the
difference between the diagnosis counts between diabetes–
only and diabetes–CKD patients. For reference, the negative
side of the x-axis are diagnoses that appeared more in
diabetes–CKD than diabetes–only patients. Our analysis also
showed that some diagnoses appear in one class but not the
other. To build our patient×diagnosis×procedure tensor, we
use the 50 diagnosis with the highest counts for each class
as well as the diagnoses that appeared much more in one
class than the other. We included all procedures associated
with these diagnoses.

V. RESULTS

We used the gamAID process to accumulate 9 phenotypes
from X (01) (to fit phenotype 1), X (1) (to fit phenotypes
2, 4, 6, 8), and X (0) (to fit phenotypes 3, 5, 7, 9). After
finishing the gamAID process, we fixed the diagnosis and
procedure modes and fit the patient mode to learn the

Fig. 1. Histogram of difference between diagnosis counts between classes.

TABLE I
PERCENTAGES OF CLASS MEMBERSHIP BY PHENOTYPE

Phenotype % Class 1 % Class 0 % Population Captured
1 0.52 0.48 0.08
2 0.49 0.51 0.80
3 0.48 0.52 0.10
4 0.48 0.52 0.21
5 0.48 0.52 0.17
6 0.54 0.46 0.09
7 0.00 0.00 0.00
8 0.48 0.52 0.08
9 0.62 0.38 0.01

membership of the patients across the phenotypes. Table I
shows the percentage of patients by class per phenotype and
the percentage of patients the phenotype captured overall.
Interestingly, phenotypes not fit on one class are dominated
by that class (e.g., phenotypes 4 is mostly diabetes-only
patients though it was fit on diabetes-CKD patients).

This implies that the patients in both classes are quite
similar, which makes intuitive sense. Figure 2 depicts a
selection of phenotypes for which diabetes-CKD patients
were the majority. In the future, we plan to consult domain
experts on the clinical relevance of the extracted phenotypes,
but based on a literature search, many of the elements of
the phenotypes in diabetes-CKD majority phenotypes have
been documented as being related to chronic kidney disease.
For example, gastrointestinal disorders (phenotypes 1 and
9), heart dysrhythmias (phenotype 1), and abdominal pain
(phenotype 1) are commonly found in patients with chronic
kidney disorder [9], [10], [11]. Additionally, back issues
(phenotype 6) are a symptom of chronic kidney disorder [12].
While we can say nothing about causation, it is interesting
to see that these phenotypic elements were present in the
diabetic-CKD majority phenotypes.

In comparison, we applied Fisher’s Linear Discriminant
Analysis (LDA) to a matricized X (01) and to the first
30 components of a PCA decomposition of the matricized
X (01)[13], [14]. We then used 5-fold cross-validation to fit
the projected vector. Figure 3 shows a distribution of obser-
vations projected onto the linear discriminant. When Fisher’s
LDA is fit on the raw matricized tensor (top left), it appears
there is good separation between the classes. However, when
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Fig. 2. A subset of phenotypes resulting from the gamAID process.

Fig. 3. LDA distribution of projected data (raw and first thirty components
of data transformed by PCA)

applied to the test set (top right), the separation quickly
disappears, which suggests overfitting. The training and test
distributions of Fisher’s LDA applied to the first 30 PCA
components look similar (bottom left and right, respectively),
but the overlap of the two classes suggests the classes are
difficult to separate. Finally, we used the linear discriminant
to predict the classes of the test set. This resulted in an
average f1-score of .4783 on the raw tensor and .3914 on the
PCA components of the tensor. In contrast, a SVM model
trained on top of the gamAID decomposition resulted in
an average f1-score of .5106. Thus, while this is a difficult
classification problem, gamAID shows an improvement over
other methods.

VI. CONCLUSIONS AND FUTURE WORK

We presented an exploratory greedy, iterative approach
called gamAID that extracts phenotypes in a supervised
manner from a population consisting of diabetes patients
without CKD and diabetes patients who will transition to
a CKD diagnosis in the future. We showed that this method
has the potential to tease out phenotypes of diverging disease
populations and paired with a simple classifier can identify
patients at-risk for CKD. In the future, we would like to
continue exploring and improving gamAID. One possible
way to improve gamAID is to tune the sparsity parameters to
capture more of the population as well as increasing the final
rank of the gamAID produced tensor. Additionally, we intend
to study the effects of fitting the second phenotype using
class 0 instead of class 1. We also plan to test this framework
on other sets of diseases (e.g., diabetes and hypertension)
with the possibility of expanding beyond pairs of diseases.
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