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Abstract

A computational phenotype is a set of clinically relevant and interesting characteristics that describe patients with
a given condition. Various machine learning methods have been proposed to derive phenotypes in an automatic,
high-throughput manner. Among these methods, computational phenotyping through tensor factorization has been
shown to produce clinically interesting phenotypes. However, few of these methods incorporate auxiliary patient
information into the phenotype derivation process. In this work, we introduce Phenotyping through Semi-Supervised
Tensor Factorization (PSST), a method that leverages disease status knowledge about subsets of patients to generate
computational phenotypes from tensors constructed from the electronic health records of patients. We demonstrate
the potential of PSST to uncover predictive and clinically interesting computational phenotypes through case studies
focusing on type-2 diabetes and resistant hypertension. PSST yields more discriminative phenotypes compared to the
unsupervised methods and more meaningful phenotypes compared to a supervised method.

Introduction

Computational phenotypes are meaningful and actionable disease- or condition-specific patient characterizations that
can be derived from electronic health records (EHRs). It has been shown that such derived knowledge can provide
healthcare practitioners with a better understanding of their underlying populations1,2,3. Additionally, they can support
the practice of precision medicine via clinical predictive modeling and improve comparative effectiveness research,
as well as advance our understanding of disease risk and drug responses4. In the past, computational phenotyping
approaches were based predominantly on rules and supervised machine learning, which required domain expertise
and only identified phenotypes that were essentially already known5,6. Rule-based methods replicate clinical knowl-
edge, which may be the goal in some situations (e.g., the phenotyping efforts of the eMERGE network)7. Recently,
unsupervised machine learning approaches have been proposed to extract meaningful computational phenotypes that
minimize domain experts’ efforts. These methods offer a viable alternative to directly mining electronic health records,
which requires expert-defined labels and other domain expertise. Techniques such as frequent pattern mining and deep
learning have been introduced for computational phenotyping8,9,10, yet they are limited in that they 1) fail to find the
underlying latent characteristics or 2) are difficult to comprehend due to nonlinear combinations of multiple layers.

Dimensionality-reduction methods for computational phenotyping have gained in popularity due to their robustness to
sparse and noisy data and to their interpretability because they allow patients to be probabilistically assigned to latent
subgroups. In particular, various tensor factorization approaches have been proposed to encapsulate the interaction
between multiple information sources (e.g., diagnosis, medications, and procedures)11,12,13,14. Tensors, which are
generalizations of vectors and matrices to higher dimensions, are ideal for capturing the multidimensional relationships
inherent in EHR count and continuous data15. Unlike a matrix, a tensor can readily express the relationship between
a medication and the different diseases it is prescribed to manage. For example, metformin, commonly prescribed to
manage diabetes, has also shown promise in treating the symptoms of polycystic ovary syndrome16. Ho et al showed
that tensor factorization could be applied to tensors constructed from EHRs to derive phenotypes that map to clinically
meaningful concepts11. Subsequent methods have improved the resulting phenotypes to fit clinicians’ expectations of
sparsity and diversity12,13,14.

While tensor-based approaches can extract interpretable and meaningful phenotypes and potentially uncover novel
characterizations, nearly all existing methods neglect auxiliary patient information (e.g., disease status, gender, age,
etc). Such auxiliary patient information can be useful in guiding the derivation process and potentially yield more
discriminative, interpretable, and meaningful computational phenotypes. Furthermore, one of the potential goals of
computational phenotyping is to use derived phenotypes to identify case and control patients for future studies,17
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which makes it problematic if patients with different disease statuses appear in the same derived phenotypes. To
overcome this challenge, we introduce Phenotyping through Semi-Supervised Tensor Factorization (PSST), a novel
method that uses auxiliary patient information to discourage patients with different disease statuses from appearing
in the same phenotypes. We posit that the use of a semi-supervised based approach to leverage known information
available for a subset of the patients will lead to phenotypes that are descriptive of the interplay between different
diseases. We demonstrate the potential of PSST to extract clinically interesting and discriminative phenotypes by
focusing on a dataset of 1,622 patients gathered at Vanderbilt University Medical Center (VUMC) where the disease
status is known for a subset of patients. Specifically, we construct a tensor that consists of the following four types
of patients: cases and controls of resistant hypertension patients and cases and controls of type-2 diabetes patients.
We compare PSST with three other tensor-based computational phenotyping methods, two of which are unsupervised
and one of which is supervised. This investigation demonstrates that using disease status for a specific diagnosis (e.g.,
resistant hypertension or type-2 diabetes) can reveal discriminative phenotypes–even for other diagnoses–that may not
be realized in fully supervised or unsupervised approaches.

Methods

Phenotyping via tensor factorization. A tensor is a generalization of a matrix to a multidimensional array where each
element of a tensor represents an n-way interaction. Tensors have the capability to capture complex relationships that
exist in healthcare. In this paper, we consider tensors with three dimensions (or modes) – patients, diagnoses, and
medications. Each element in the tensor represents the number of times each patient was prescribed a medication
within a specified amount of time of receiving a diagnosis.

Prior to describing our approach, we introduce notation and concepts used throughout this paper. The number of
dimensions (or modes) in a tensor is called the order of the tensor. A vector is a tensor of order 1, and a matrix is a
tensor of order 2. A tensor can be decomposed using information in the multidimensional structure to extract succinct
components that are more likely to be interpretable than the raw data contained in the original tensor15. A common
tensor decomposition model is the CANDECOMP/PARAFAC (CP) decomposition. CP decomposition can be thought
of as an extension of Singular Value Decomposition or Principal Component Analysis from matrices to higher-ordered
tensors. CP decomposition factorizes the original tensor X as a sum of R rank-one tensors where an N -way rank-one
tensor can be expressed as the outer product of N factor vectors18,19. The CP decomposition is denoted as:

X ≈ Z =

R∑
r=1

λrar ◦ br ◦ cr = Jλ;A;B;CK (1)

We will use Z = Jλ;A;B;CK as shorthand notation where the λr weights are organized into the vector λ =
[λ1 · · ·λR] and the factor column vectors are stacked into factor matrices (e.g., A = [a1 · · ·aR]). The most popular
algorithm for fitting the CP model is CP-Alternating Least Squares (CP-ALS), which assumes the underlying distribu-
tion of the data is Gaussian18,19. For count (nonnegative integer) data, a Poisson-based distribution has been proposed
to yield non-negative factor vectors consistent with the observed data20.

Computational phenotypes can be derived by constructing a tensor from patient-level EHR data and factoring it via
the CP model, illustrated in Figure 1. Here, the original tensor X is a 3-mode tensor (i.e., patients, diagnoses, and
medications) that is decomposed into a sum of R rank-one tensors. Each rank-one tensor is formed by taking the
outer product of a patient factor vector ar, a diagnosis factor vector br, and a medication factor vector cr. The
rank-one tensor can then be interpreted as a phenotype where the non-zero elements (denoted as colored blocks) of
each factor vector form the clinical characteristics. The weight λr denotes the importance of the rth rank-one tensor
(i.e., computational phenotype) in terms of explaining the observed EHR tensor. For EHR tensors where the elements
contain the co-occurrences of patients, diagnoses, and medications (counts of the 3-way interaction), the Poisson-based
loss function has been shown to be robust and to yield interpretable, clinically relevant patterns for practitioners11,12.

Marble is a sparse, nonnegative tensor factorization method that simultaneously derives multiple phenotype candidates
with virtually no domain expert supervision12. The algorithm decomposes the observed EHR tensor into two terms, a
rank-one bias tensor and an interaction tensor. The bias tensor represents the baseline characteristics common among
the overall population and the interaction tensor defines the phenotype candidates, as shown in Figure 1. Granite,
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an extension of Marble, was introduced by Henderson et al. to yield diverse phenotypes14. Granite incorporates an
angular penalty into the loss function to produce phenotypes that are both sparse and diverse, which are characteristics
valuable to clinicians. Both Marble and Granite are purely unsupervised methods (no domain expertise required).

Other tensor factorization models have been proposed to extract computational phenotypes and incorporate some form
of supervision. Rubik, a model that uses the same assumptions as CP-ALS, introduced a combination of pairwise
constraints on the vectors in the factor matrices and guidance matrices to improve the meaningfulness of the factors13.
Rubik’s guidance matrices, which encode information that is already known, attempt to induce classes that have mini-
mal overlap by guiding the non-patient modes using domain knowledge. However by focusing on guiding non-patient
modes, Rubik’s approach may leave out clinically interesting phenotypes. Kim et al. also proposed a supervised tensor
factorization method where patient outcome information guides the tensor decomposition to discover phenotypes that
are good predictors of patient outcomes for unseen patients as well as generate distinct phenotypes21. However, this
work, hereinafter referred to as DDP (Discriminative and Distinct Phenotyping), requires complete knowledge of the
outcomes for each cohort patient. Furthermore, they use preprocessing methods to ensure all terms in a phenotype
are similar and cohesive. Like the guidance provided in Rubik, this approach could smooth over novel phenotypes
important to understanding a condition.

Figure 1: An example of phenotyping via tensor factorization. The tensor containing the observed data is pictured
as the cube on the left. Each element of the observed tensor corresponds to the number of times a patient received a
medication prescription and diagnosis in a set amount of time. A set of rank-one components, formed by taking the
outer product of a patient, a diagnosis, and a medication factor vector, is found by minimizing a loss function. The
non-zero elements in each component are indicated by colored bars in the factor vectors and consist of the clinical
characteristics in that phenotype. The goal of PSST is to use information about the disease status of just a few of the
patients within the tensor to encourage patients with different statuses to be in different components. This is indicated
by the various colored blocks in the patient factor vectors.

Semi-supervised tensor factorization. Semi-supervised learning (SSL) is a hybrid of supervised and unsupervised
learning where there is a (small) portion of labeled data and unlabeled data. The assumption in SSL is that the
unlabeled data provides information about the distribution of the examples that are useful. One class of approaches,
transductive SSL, is useful in situations where we know something about the relationships between observations and
wish to incorporate that information into the learning process22. In particular, semi-supervised clustering introduces
the notion that there are pairs of data points that must be clustered together, or must-link, and pairs that must not be
clustered together in the same cluster, or cannot-link. While tensor factorization is similar to clustering, relatively few
tensor decomposition methods incorporate semi-supervision. Peng introduced must-link and cannot-link constraints
for the least squares objective function (data follows Gaussian distribution)23. We use the cannot-link constraints
approach but formulate our method for count data.

Through cannot-link constraints, PSST encourages patients with different disease statuses to be affiliated with different
phenotypes. For example, when trying to identify interesting groups of patients, we may have prior information
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(e.g., case or control for a specific disease) that a subset of patients should be grouped together while some others
should not24. We propose the use of soft cannot-link constraints on the patient phenotype membership matrix (A) to
encourage separation between the known classes of patients. Here soft constraints refer to restrictions that will result
in a penalty if they are not met. By using partial patient status information, PSST does not dictate which phenotypes
should be extracted. Rather, it encourages patients with different disease statuses to map to different phenotypes.
Moreover, it does not require all patients have a known label.

PSST Mathematical Formulation. Our work is developed for EHR count tensors, where each element represents an n-
way co-occurrence count. PSST is built on existing nonnegative CP decomposition algorithms that model the observed
data using the Poisson distribution11,12,14. For simplicity, we focus on a 3-mode tensor where the three dimensions are
(1) patients, (2) diagnoses, and (3) medications. However, our approach can easily generalize to anN -mode tensor. An
observed tensor, X ∈ RI1×I2×I3 is approximated as the sum of R 3-way rank-one tensors X ≈ Z = Jλ;A;B;CK.
We place several constraints on the resulting factor matrices to encourage phenotypes with certain characteristics.
For the diagnoses and medication factor matrices (B and C respectively), we incorporate angular penalty matrices
to diversify the phenotypes whenever possible. PSST also introduces a cannot-link matrix (M) on the patient factor
matrix (A) to encourage separation in the patients, where different disease statuses are in different phenotypes (e.g.,
hypertension case patients and hypertension control patients). This notion is illustrated in Figure 1. The optimization
problem for the observed tensor X is:

f(X ) = min(
∑
~i

(z~i − x~i log z~i)︸ ︷︷ ︸
KL divergence

+β1trace(AᵀMA)︸ ︷︷ ︸
cannot-link constraints

+
β2
2

R∑
r=1

(||ar||22 + ||br||22 + ||cr||22)︸ ︷︷ ︸
`2regularization

(2)

+
β3
2

R∑
r=1

r∑
p=1

(
(max{0, (bp)

ᵀbr

||bp||2||br||2
− θ})2 + (max{0, (cp)

ᵀcr
||cp||2||cr||2

− θ})2
)

(3)

s.t Z = Jσ;ua;ub;ucK + Jλ;A;B;CK (4)
||ar||1 = ||br||1 = ||cr||1 = ||ua||1 = ||ub||1 = ||uc||1 = 1,ar,br, cr ≥ 0,ua,ub,uc > 0 (5)

For count data, the loss function is the negative log-likelihood between the observed data x and the model z parameters
(i.e., the term labeled “KL divergence” in (2)). As introduced in Granite, an angular penalty term (3) discourages any
factors that are too similar, where similarity is defined as the cosine angle between two factor vectors. Additionally to
control the growth of the size of the factors and for computational stability, we include an l2 penalty term (labeled in
(2)).

Unlike Granite and Marble, PSST incorporates partial class knowledge to encourage patients with different disease
statuses to appear in different phenotypes using a cannot-link semi-supervised penalty term. In the term labeled
“cannot-link constraints” in (2), the cannot-link matrix M ∈ RI1×I1 is constructed such that mi,j = 1 only if patients
i and j have different disease statuses and is otherwise 0. If patients i and j are in different classes but both belong
to phenotype r, then the penalty air · ajr is added to the objective function. Thus the cannot-link constraint term
will only contribute to the objective function if two patients have two different disease statuses (e.g., one patient is
a case and one is a control) and will be 0 otherwise (e.g., both patients are case, both are control, or one of them is
unknown). Figure 1 illustrates the impact of this cannot-link term, phenotype 1 and R consists of cases and patients
with unknown disease status and phenotype 2 consists of controls and patients with unknown disease status. Since this
is a soft penalty, some case and control patients can be in the same phenotype–provided they are highly similar. We
use gradient descent to solve the optimization problem.

Experiment Design

Dataset and preprocessing. We constructed a tensor from the diagnosis and medication counts of 1,622 patients
from the Synthetic Derivative (SD), a de-identified EHR database of VUMC patients25. The SD contains clinical and
billing code information for over 2 million inpatient and outpatient interactions. Previously, a panel of domain experts
identified sets of characteristics in the form of billing and medical codes of patients as case and control for a set of
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diseases26. In this paper, we focus on resistant hypertension case and control patients and type-2 diabetes case and
control patients. A small subset of these patients are both resistant hypertension and type-2 diabetes cases (see Table 1
for the number of patients in each class).

Table 1: Patient disease status (supplied by domain experts) in the VUMC SD dataset used in this study.

Disease Class Number of Patients
Resistant hypertension case 304
Resistant hypertension control 399
Type 2 diabetes case 373
Type 2 diabetes control 452
Type 2 diabetes and resistant hypertension case 94

For each case patient, we counted the medication and diagnosis interactions that occurred two years before they re-
ceived the diagnosis of the disease (i.e., hypertension or type-2 diabetes). For each control patient, we counted the med-
ication and diagnosis interactions that occurred two years before their last interaction with the VUMC. The diagnosis
codes follow the International Classification of Diseases (ICD-9) system and capture information at a high level of de-
tail for insurance purposes. We use PheWAS coding to aggregate the diagnosis codes into broader categories24. Addi-
tionally, we use MeSH pharmacological terms provided by the RxClass RESTful API, a service of the US National Li-
brary of Medicine, to group the medications into more general categories (https://rxnav.nlm.nih.gov/RxClassAPIs.html).
These groupings resulted in a tensor with the following dimensions: 1622 patients by 1325 diagnoses by 148 medica-
tions.

Evaluation Metrics. We evaluate PSST with respect to three criteria: (1) the efficacy of the cannot-link constraint in
encouraging case and control patients to belong to different phenotypes, (2) the discriminative quality of the resulting
phenotypes on an unrelated classification task, and (3) the clinical meaningfulness of the resulting phenotypes.

For the second evaluation metric, we use a cannot-link matrix on resistant hypertension case and control patients to
perform the factorization and then use the resulting patient factor matrix to predict which are the type-2 diabetes cases
and controls. Likewise, we reversed the two, where the tensor factorization is carried out with a cannot-link matrix on
the type-2 diabetes case and control patients, and then the resulting patient factor matrix was used to predict resistant
hypertension. For each classification task, we row-normalize the patient factor matrix (A) to obtain a phenotype
membership (probability that a patient belongs to each phenotype). Then, using a logistic regression model, we
perform a 5-fold cross-validation to evaluate the lift and the area under the receiver operating curve (AUC). Lift is the
ratio between the results obtained through the predictive model and results obtained without a model. Our hypothesis
is that the resistant hypertension cannot-link constraints in PSST will result in phenotypes that uncover latent factors
pertinent to type-2 diabetes patients and that type-2 diabetes cannot-link constraints will have a similar effect for
identifying hypertension case patients.

To evaluate the clinical meaningfulness, we enlisted two clinicians to annotate the phenotypes as clinically relevant
or not clinically relevant. To reduce the annotation burden, the classification task results were used to identify highly
predictive phenotypes and these were randomly shuffled to avoid biasing the experts.

Unsupervised and Supervised Comparison Models. We compared PSST with three other tensor factorization methods:
Marble12, Granite14, and DDP21. Marble has two sets of parameters relating to the strength of the underlying charac-
teristics (bias term) and the sparsity of the resulting factors. These parameters are tuned to achieve comparable results
with respect to the number of non-zero elements per computational phenotype. Granite has both a sparsity-inducing
and a diversity-inducing regularization term to yield a sparse set of diverse phenotypes. The Granite parameters
(excluding the diversity-inducing term) are tuned to yield the best predictive accuracy. DDP incorporates a logistic
regression term, as well as a similarity-based cluster structure, to encourage distinctness. Since this cluster structure
requires existing knowledge, we excluded it from our analysis.
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Results

We chose R = 30 phenotypes for PSST, Marble, and Granite through a grid search on R. Since DDP was restricted
to case and control patients and resulted in a smaller tensor, we found 15 phenotypes resulted in a reasonably good fit.

Efficacy of Cannot-Link Constraints: Class Separation in Patient Factor Matrix. After fitting the PSST decomposition,
we analyzed how well it encouraged class separation within the phenotypes, and we compared it to the performance of
DDP, Granite, and Marble. For these experiments, we show results for two formulations of PSST and Granite, one with
the angular penalty, denoted as “with diversity,” and without the angular penalty. In each phenotype, we calculated
the percentage of patients who were case and the percentage of patients that were control and then took the difference.
For example, a difference of .2 in phenotype k means that the control class consisted of 40% of the phenotype while
the case class consisted of 60% of the phenotype. Figures 2a and 2b depict histograms of the difference between
the percentages within each phenotype for PSST (with and without diversity constraints), Marble, Granite (with and
without diversity constraints), and DDP. The bin color was set to orange (majority control) if the difference was< −.1,
to teal if the difference was > .1 (majority case), and to purple (no majority) otherwise. Ideally, there should be bars
on each side of the dotted line. This would indicate that there are phenotypes that are distinct to case patients and
to control patients (i.e., they mostly contain case patients or mostly contain control patients). Figure 2a shows that
PSST with and without diversity resulted in phenotypes where the majority was either hypertension case (teal bins)
or hypertension control (orange bins). Marble and Granite (with and without diversity) resulted in phenotypes that
most often consisted of case patients, and DDP resulted in phenotypes that consisted only of case patients. Thus, the
competing methods fail to separate the case and control patients and fail to discover phenotypes distinct to the disease
statuses.

(a) Phenotype membership difference of resistant case and control patients using resistant hypertension cannot-link constraints.

(b) Phenotype membership difference for type-2 diabetes case and control patients using type-2 diabetes cannot-link constraints.
Figure 2: Histograms of difference between the percent membership by class for patients using disease-specific
cannot-link constraints. The x-axis (“% Difference”) is the difference between the percentage of case patients and the
percentage of control patients in each phenotype, while the y-axis is the number of phenotypes. A positive difference
refers to more case patients (green), a negative difference refers to more controls (orange), and approximately 0 means
neither population dominates (purple).

Similarly in Figure 2b, PSST with and without diversity constraints results in phenotypes that are either primarily type-
2 diabetes case or control patients. Granite with diversity was the only decomposition aside from PSST to derive any
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phenotypes consisting of a majority control patients. DDP’s lack of separation between patient classes is surprising
given that it incorporates a logistic regression loss term in its fitting process. In both case studies, the cannot-link
constraints in PSST encourage class separation within the phenotypes.

Discriminative Evaluation. Using logistic regression, we compared how well each method discriminates between case
and control patients. For PSST, we predict case and control patients that were not used in the cannot-link constraints.
Specifically, if a fit used the cannot-link constraints on type-2 diabetes case and control patients, we then predict the
resistant hypertension case and control patients, and vice versa for cannot-link constraints on resistant hypertension.
The features for the logistic regression are the row-normalized patient factor matrix and restricted to the rows corre-
sponding to case and control patients. Table 2 shows the AUC values averaged across the five runs for each method
for predicting resistant hypertension and type-2 diabetes. As expected, the supervised method DDP outperformed all
methods, but PSST had the second highest AUC for each condition. Secondly, there is a tradeoff between diversity
constraints (e.g., in PSST and Granite) and the predictive quality of the phenotypes, which was previously noted by
Henderson et al14. Furthermore, the relatively low AUC values indicate that these are difficult classification problems,
but the performance of PSST implies that incorporating knowledge about a subset of patients can be beneficial.

Table 2: AUC for predicting case and control patients using decompositions with cannot-link constraints on the other
case and control patients. For example, “Hypertension” below refers to the AUC for predicting hypertension patients
when the cannot-link constraints were applied to type-2 diabetes case and control patients.

Condition
Method Hypertension Type-2 Diabetes
PSST 0.6618 0.6074
PSST with diversity 0.6275 0.5830
DDP 0.6928 0.6614
Granite 0.6074 0.5528
Granite with diversity 0.5939 0.5745
Marble 0.5919 0.5928

Figures 3a and 3b show the lift of the three methods with the highest AUCs in each classification task. When predicting
who is a type-2 diabetes case patient (Figure 3a), DDP has a higher lift than Marble and Granite. On the other hand,
when predicting which patients are resistant hypertension case and control in this particular instance (Figure 3b), PSST
consistently has the highest lift. This is surprising given DDP incorporates the resistant hypertension case and control
status into fitting the decomposition and has the highest AUC. This indicates that semi-supervision in PSST could be
guiding the decomposition toward phenotypes that are meaningful for resistant hypertension patients.

(a) Type-2 diabetes prediction task. (b) Resistant hypertension prediction task.
Figure 3: Lift curves for the two prediction tasks

Clinical Relevance Evaluation. As a final step in our analysis, two clinicians annotated the clinical relevance of the
phenotypes generated by PSST, Marble, and DDP that were most predictive of being a resistant hypertension case

570



patient. The clinicians assigned each phenotype one of the following labels: 1) clinically meaningful, 2) possibly
clinically meaningful, and 3) not clinically meaningful. In total, the clinicians annotated 5 PSST-, 5 Marble-, and
3 DDP-generated phenotypes (DDP had only three positive coefficients). In cases where the annotator’s disagreed,
we used the label with the lowest clinical relevance score. Using Cohen’s Kappa, the inter-rater reliability score was
κ = .45, suggesting the inter-rater agreement was moderate.

Figure 4 shows the distribution of the annotations by method. For DDP, 66% of the phenotypes were possibly or
not clinically meaningful, suggesting there may be a trade-off between seemingly good predictive quality and clinical
relevance. PSST and Marble had the same number of clinically relevant phenotypes, with only 20% deemed not signif-
icant. By incorporating semi-supervision through soft constraints, PSST maintains predictive power and interpretative
value in this case study.

Figure 4: The percentage of most predictive phenotypes generated by PSST, Marble, and DDP phenotypes that were
clinically significant, possibly clinically significant, not clinically significant.

Discussion and Conclusions

PSST, which only incorporates partial patient information, resulted in phenotypes that exhibited a high degree of sepa-
ration between case and control patients. The phenotypes extracted by PSST were more predictive of case and control
for the two conditions hypertension and type-2 diabetes than two unsupervised methods. It did not perform quite as
well on the prediction task as the supervised method, DDP, but DDP requires complete knowledge of patient disease
status while PSST only needs information about a subset of patients. Additionally, in terms of clinical relevance, the
phenotypes produced by DDP were not as clinically relevant overall as compared to PSST. This implies that for DDP
there may be a trade-off between clinical relevance and predictive power. Furthermore, DDP requires labels for all
patients, and the cost of obtaining labels in medical informatics can be high in terms of time and expertise required.
Therefore, a semi-supervised method like PSST could help researchers use information available to them without
restricting their work to labeled observations.

One major challenge in extracting phenotypes through automatic, machine learning methods is verifying the pheno-
types are clinically interesting and meaningful. This validation step is a task that requires domain expertise and time.
Furthermore, the phenotypes themselves should be annotated by a panel of experts, and the analysis in the previous
section showed that annotators do not agree on the clinical significance of a phenotype at all times. Therefore, it
may be beneficial to use a third-party annotator. For this purpose, we developed PheKnow–Cloud, a tool that uses
co-occurrence analysis on a publicly available repository of medical articles to calculate a clinical validity score for
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Table 3: Example of phenotype labelled “possibly clinically significant.”

Diagnoses Medications
Hyperlipidemia Angiotensin converting enzyme inhibitors
GERD Antihyperlipidemic agents

Antiadrenergic agents, centrally acting

a supplied phenotype27. PheKnow–Cloud could prove useful for situations where annotators labeled a phenotype as
“possibly clinically significant,” as they did for a PSST phenotype show in Table 3. According to PheKnow–Cloud,
this phenotype is likely clinically meaningful, which may lead to further discussion between the annotators.

In conclusion, we presented Phenotyping through Semi-Supervised Tensor factorization, or PSST, a method that in-
corporates information from subsets of patients to encourage class separation in patient phenotype membership. Using
two case studies, we demonstrated the benefits of integrating partial information into the tensor factorization process to
derive phenotypes. We showed the semi-supervised constraints induce considerable class separation between patients
with different disease statuses (i.e., case and control) whereas a supervised and two unsupervised methods resulted in
little to no class separation. Additionally, PSST may help extract phenotypes that are more descriptive and predictive of
patients’ disease statuses than purely unsupervised methods, and while PSST did not outperform a supervised method
on a prediction task, it did result in phenotypes that were more interpretable than those of the supervised method. We
note that this is a pilot study and more study is necessary to provide sufficient evidence of PSST’s viability, but the
early results are promising.

There are opportunities to extend PSST to a larger sets of conditions and outcomes. For example, if within a set of
hypertension patients, we knew a subset had heart attacks, it would be useful to put cannot-link constraints between
those who had heart attacks and those who did not and examine the resulting phenotypes. Furthermore, it would be
useful to analyze which phenotypes are highlighting indicators of disease progression or outcome.
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