
Distributed Tensor Decomposition for Large Scale Health
Analytics

Huan He
Emory University
Atlanta, Georgia

huan.he@emory.edu

Jette Henderson
CognitiveScale
Austin, Texas

jette.henderson@gmail.com

Joyce C. Ho
Emory University
Atlanta, Georgia

joyce.c.ho.emory.edu

ABSTRACT
In the past few decades, there has been rapid growth in quantity
and variety of healthcare data. These large sets of data are usually
high dimensional (e.g. patients, their diagnoses, and medications
to treat their diagnoses) and cannot be adequately represented as
matrices. Thus, many existing algorithms can not analyze them.
To accommodate these high dimensional data, tensor factorization,
which can be viewed as a higher-order extension of methods like
PCA, has attracted much attention and emerged as a promising
solution. However, tensor factorization is a computationally expen-
sive task, and existing methods developed to factor large tensors
are not flexible enough for real-world situations.

To address this scaling problem more efficiently, we introduce
SGranite, a distributed, scalable, and sparse tensor factorization
method fit through stochastic gradient descent. SGranite offers
three contributions: (1) Scalability: it employs a block partition-
ing and parallel processing design and thus scales to large tensors,
(2) Accuracy: we show that our method can achieve results faster
without sacrificing the quality of the tensor decomposition, and
(3) FlexibleConstraints: we show our approach can encompass var-
ious kinds of constraints including l2 norm, l1 norm, and logistic
regularization. We demonstrate SGranite’s capabilities in two real-
world use cases. In the first, we use Google searches for flu-like
symptoms to characterize and predict influenza patterns. In the
second, we use SGranite to extract clinically interesting sets (i.e.,
phenotypes) of patients from electronic health records. Through
these case studies, we show SGranite has the potential to be used
to rapidly characterize, predict, and manage a large multimodal
datasets, thereby promising a novel, data-driven solution that can
benefit very large segments of the population.

CCS CONCEPTS
• Information systems → Web mining; Data extraction and
integration; • Computing methodologies→ Factor analysis;
Canonical correlation analysis;MapReduce algorithms; •Ap-
plied computing→ Health informatics.

KEYWORDS
Web Mining; User-Generated Content; Health Analytics; Tensor
Decomposition; Distributed Algorithm; Apache Spark

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313548

ACM Reference Format:
HuanHe, Jette Henderson, and Joyce C. Ho. 2019. Distributed Tensor Decom-
position for Large Scale Health Analytics. In Proceedings of the 2019 World
Wide Web Conference (WWW ’19), May 13–17, 2019, San Francisco, CA, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3308558.3313548

1 INTRODUCTION
Increasingly large amounts of health-related data are released on the
Internet and have great potential for enabling better disease surveil-
lance and disease management. As a motivating example, search
activities on diseases such as influenza can be used and correlated
with actual influenza surveillance data. Estimation of influenza-like
illness (ILI) rates is a well-studied task [25, 32], Google Flu Trends,
while flawed, demonstrated a link between influenza related search
queries and the Centers for Disease Control and Prevention’s (CDC)
ILI rates[19]. Similarly, programs such as the National Institute of
Health’s All for Us NIH [2], are looking to gather data and make
it publicly available to researchers to enable precision medicine.
Extracting influenza patterns or clinical characteristics from such
high-dimensional data can pose challenges, even before considering
whether the data has been appropriately labeled.

A vast majority of the algorithms for disease surveillance or
disease prediction adopt a supervised learning approach, but the
need for labels can limit the possible scope of the task. However,
unsupervised learning methods such as tensor factorization have
been successfully applied in many application domains including
social network analysis [29, 30, 39] and health analytics [15, 16, 18,
22, 36]. Tensors can succinctly represent high-dimensional data,
including various representations of time or different sources of
data. For example, an existing work showed that factorizing a tensor
that grouped ILI historical statistics by year, week, and region could
tease out patterns that are commonly based on the weeks that
influenza is highest, deliver insight into the degree to which regions
are similar or different from one another in terms of influenza, and
capture the changes in ILI intensity from one year to the next [13].
Moreover, a variety of constraints can be placed on the learned
latent factors to extract meaningful patterns and reduce overfitting.
Yet, efficient tensor decomposition of large datasets in the presence
of such constraints can be challenging.

In this paper, we propose SGranite, a distributed tensor decom-
position framework that can incorporate a variety of regularization
terms to constrain the latent factors. In particular, we show that
integrating three forms of regularization terms can achieve easier-
to-interpret factors, provide robustness in the presence of noise, and
map to existing domain knowledge. Moreover, SGranite is very
fast and scalable. Using a Spark-based implementation, we demon-
strate the ability to decrease computation time by distributing both

659

https://doi.org/10.1145/3308558.3313548
https://doi.org/10.1145/3308558.3313548

the data as well as the parameters without sacrificing accuracy. To
promote reproducibility, our code is open-sourced and available on
GitHub1.

The contributions of our work can be summarized as follows:
• Flexibility: Our framework supports a variety of meaning-
ful constraints such as sparsity, diversity, and distinguish-
ability.
• Scalability: Our scalability analysis of SGranite on a large
tensor constructed from healthcare data achieves near lin-
earity speed-up as we scale to the number of machines.
Moreover, our framework achieves at least a 4× speed-up
compared to an existing state-of-the-art distributed tensor
factorization method.
• Accuracy: Our empirical results in two health-related case
studies show that incorporating the variety of constraints
improves interpretability and robustness compared to the
standard decomposition models.

Table 1 summarizes the contributions in the context of existing
works.

2 BACKGROUND AND NOTATION
This section briefly introduces tensors and a popular tensor decom-
position model. We refer the reader to [24, 34] for comprehensive
overviews of practical tensor decompositions.

2.1 Tensors
Tensors are generalizations of matrices and vectors to higher dimen-
sions. An N -way tensor is denoted as X ∈ RI1×I2×···×IN and each
cell of the tensor represents the interactions between N types of
data. Each dimension of the tensor is referred to as a mode. Tensors
can be unfolded or flattened as a matrix, which is called matri-
cization. X(n) denotes the matricization of tensor X along mode-n.
Table 2 lists the operations and symbols used in this paper.

Definition 2.1. A rank-one N-way tensor is the outer product of
N vector

X = a(1) ◦ a(2) ◦ · · · ◦ a(N) .

Each element of a rank-one tensor is the product of the corre-
sponding vector elements (i.e., xi1i2i3 · · ·in = a

(1)
i1
◦ a

(2)
i2
◦ · · · ◦ a

(N)
iN

).

2.2 Tensor Decompositions
The CANDECOMP / PARAFAC (CP) model [7, 14] is one of the
most popular and well-studied tensor decomposition method. In
CP decomposition, the tensor is factored into a sum of rank-one
tensors:

X ≈ M =

R∑
r=1

A(1) (:, r) ◦ A(2) (:, r) ◦ · · · ◦ A(n) (:, r),

whereA(n) (:, r) is the r th column ofA(n) . CP-decomposition can be
also expressed as [[λ;A(1) ;A(2) ; · · · ;A(n)]], where λ is a vector of
the weights λr . Several benefits of the CP decomposition includes
its intuitive output structure, uniqueness property that makes the
model reliable to interpret, and the ability to learn a model even
with relatively small amount of observations [24]. Figure 1 provides
1https://github.com/hehuannb/SGranite-WWW

Figure 1: An example of CP decomposition for influenza
search data. A tensor is constructed of time series data is de-
composed into the weighted sum of rank-one tensors based
on theminimization of an objective function. Each rank-one
tensor, formed by taking the outer product of factor vectors,
constitutes a latent factor.

an example of the CP decomposition for an influenza-based tensor,
where each rank-one tensor represents a pattern over time for a
group of states and a set of search queries.

The CP decomposition, A(1) ,A(2) , · · · ,A(n) , is performed by
minimizing the loss between X and M as defined by an objec-
tive function. The form of the objective function is determined by
assumptions about how the data in the tensor was generated. A
standard method of fitting a CP decomposition is the least squares
formulation, which assumes the random variation in the tensor
data follows a Gaussian distribution. Unfortunately, this may not be
appropriate for count data, which is common in many applications
including those considered in this paper [17].

Amore appropriate objective function for count data assumes the
underlying distribution of the data is Poisson [8]. This assumption
results in an objective function that minimizes the Kullback-Leibler
(KL) divergence:

f (M) =
∑
i
mi − xi logmi .

There have been several recent works to accelerate the compu-
tational speed of the CP decomposition. FlexiFact partitions the
tensor into smaller tensors that are then decomposed in parallel
using Apache Hadoop. While their method scales well with the
input size, the model is not well-suited for count data and performs
excessive disk operations. More recently, DisTenC, a Spark-based
distributed tensor completion algorithm was proposed that regu-
larizes the trace norm of the tensor [11]. Similar to FlexiFact, it is
designed for numeric data and does not support any regularization
or constraints on the factors.

3 SGRANITE
We propose SGranite, a distributed and flexible constrained CP
model, to impose a variety of constraints on the latent factors.
Our algorithm uses distributed stochastic gradient descent (DSGD)
approaches to scale the CP decomposition on count data to huge
datasets. SGranite has the following benefits:
• Simultaneously supports multiple constraints on the factor
matrices.
• Learns patterns even when data cannot be stored on a single
server.
• Maintains computational efficiency across a large number
of workers.

660

Table 1: A comparison of the supported features between SGranite versus state of arts methods

Feature SGranite CP-APR [8] Granite [16] FlexiFact[6] DisTenC [11]
(fit using SGD)

Scalable Yes No Yes Yes Yes
Memory Efficient Yes No Yes No Yes
Time efficient Yes No No Yes Yes
Appropriate for count data Yes Yes Yes No No
Works with constraints Yes No Yes Yes No

Table 2: Table of symbols and their associated definitions

Symbol Definition
X, X, x, x Tensor, Matrix, Column Vector, Scalar
X(n) n-mode matricization of a tensor X
X(r, :) r th row of X
X(:, r) r th column of X
A(n) nth factor matrix
∥a∥2, ∥A∥F l2 norm, Frobenius norm
∗ Hadamard (elementwise) product
◦ outer product
⊗ Kronecker product
⊙ Khatri-Rao product (column-wise ⊗)

A distributed framework for incorporating a variety of constraints
in CP decomposition is appealing for several reasons including
the ability to extract patterns from large datasets that cannot be
readily stored on a centralized server, to encode prior knowledge,
to improve interpretability, and to democratize high-dimensional
learning by running on standard commodity servers.

In this section, we will first provide a general overview and then
formulate the optimization problem.

3.1 General Optimization Problem
SGranite, builds on several existing nonnegative CP decomposition
algorithms to model sparse count data using the Poisson distribu-
tion [8, 16]. LetX denote an observed tensor constructed from count
data with size I1 × I2 × · · · × IN andM represent a same-sized ten-
sor of Poisson parameters for X. In addition to KL divergence, we
introduce generalized constraints on the factor matrices, R (A(n))
to the objective function. Thus, the optimization problem is defined
as:

min f (M) =
∑
i⃗

(mi⃗ − xi logmi⃗) +
∑
k

βkRk
(
A(n)
)︸ ︷︷ ︸

regularization terms

s.t.M = ⟦λ;A(1) , · · · ,A(N)⟧

λr ≥ 0, | |a(n)r | |1 = 1, ∀r

A(n) ∈ [0, 1]In×R , ∀n

(1)

The Poisson parameters,m, can be determined byminimizing the
negative log-likelihood of the observed data x. We also maintain the

stochasticity (i.e., elements sum to 1) and non-negativity constraints
(i.e., factor elements and weights, or λ, must be non-negative) that
were introduced in the original CP-APR model [8].

3.2 Example of Useful Regularization Terms
Equation 1 supports a variety of regularization items, R (A(n)).
While we describe three forms of special regularizations that are
useful for analyzing health data, SGranitewas developed to handle
any regularization that is either smooth and differentiable or has
an easy-to-compute proximal operator [31].

3.2.1 Diversity onA (n) . For analyzing flu patterns or clinical char-
acteristics of patient subgroups, it is preferable for the rank-one fac-
tor components to be distinct from each other. This allows domain
experts to more easily interpret the patterns. While several mecha-
nisms for encouraging diversity have been proposed [16, 21, 36],
we adopt the angular penalty term in [16] that encourages diver-
sity between rank-one tensors by penalizing overlapping elements.
There are two benefits to this regularization. It does not require
prior knowledge to construct a similarity matrix that is used in
[21]. Similarly, it does not require the discovered patterns to be
orthogonal to one another [36], which may be too restrictive. Under
angular regularization, any element that has large values in multi-
ple columns in the factor matrix are penalized. Thus, the angular
penalty for the nth factor matrix, A(n) , is formulated as follows:

Rk
(
A(n)
)
=

R∑
r=1

r∑
p=1

max *
,
0,

(anp)
T anr

∥anp ∥2∥a
n
r ∥2
− θn+

-

2

3.2.2 Sparsity and Smoothness on A (n) . Sparsity and smoothness
constraints have been introduced in a wide range of applications
to improve interpretability and increase robustness to noise. Our
framework supports a general class of ℓp penalties including sim-
plex constraint term (| |ar | |1 = 1,air ∈ [0, 1]); ℓ2 regularization on
the weight and the first factor matrix, λA (1) to mitigate overfitting
to large count data; and the ℓ0-norm regularization which caps the
number of non-zeros elements in the factor.

We first consider the simplex constraint term, which can yield
sparse factors while providing a probabilistic interpretation. For
the nth factor matrix, A(n) , we restrict the elements to lie on the
ℓ1-ball of diameter s , where s is a user-specified parameter, such
that:

Rk
(
A(n)
)
=

R∑
r=1

(s − ||a(n)r | |1)

661

When s = 1, this results in the projection of the factor onto the
probabilistic (or canonical) simplex [9]. By decreasing s to be less
than 1, the resulting factors will be sparser.

The ℓ2-norm regularization was introduced in [16] to encourage
terms in the factor matrix vectors to be similar-sized. Together with
the simplex projection, the interaction of these two regularizations
achieved further sparsity by driving specific elements to 0 more
quickly in a similar manner to the elastic net regularization [41].

Rk
(
A(n)
)
=

R∑
r=1
∥a

(n)
r ∥2

The ℓ0-norm regularization, introduced in [4], is an alternative to
the simplex projection that limits the number of non-zero elements.
While its usage in Equation 1 results in a non-convex optimization
problem, the hard thresholding properties can yield easy to interpret
factors (top-k elements). To perform hard-thresholding on the nth
factor matrix, A(n) , the regularization term is:

Rk
(
A(n)
)
=

R∑
r=1
∥a

(n)
r ∥0

3.2.3 Discriminative Factors. In some scenarios, the discovered pat-
terns should be discriminative of a certain outcome of interest. For
example, we may want to use the clinical characteristics to predict
things like mortality or whether or not the patient is likely to be
readmitted in 30 days. [21] introduced a logistic regression regu-
larization that encouraged the derivation of latent factors that can
distinguish in-hospital mortality outcomes. SGranite also adopts
the regularization term to derive discriminative latent factors when
such information exists. Without loss of generality, we assume
that the first mode has labeled records. Then the discriminative
regularization is of the form:

Rk
(
A(1)) = log P (A (1) ,y |θ)

The probability of a sample a(i, :) (ith row in A(1)) having the out-
come of interest, P (A (1) ,y |θ), is obtained by training a logistic
regression model on the factor matrix A(1) .

3.2.4 Sparse, Diverse, and Discriminative Patterns. To demonstrate
the flexibility of SGranite, we introduce all three forms of regular-
ization into our final optimization problem. Thus, the final objective
function is:

f (M) =
∑
i⃗

(mi⃗ − xi logmi⃗)+

β1
N∑
n=1

R∑
r=1

r∑
p=1

max *
,
0,

(anp)
T anr

∥anp ∥2∥a
n
r ∥2
− θn+

-

2

+

β2
N∑
n=1

R∑
r=1

(s − ||a(n)r | |2) + β3 log P (A (1) ,y |θ)

(2)

3.3 SGD Updates
This section provides details of how to solve our optimization prob-
lem efficiently (Equation 2). SGranite uses an alternating mini-
mization approach, cycling through each mode while fixing all the
other modes. For each mode, the resulting subproblem is solved
using stochastic gradient descent (SGD). To derive the SGD updates,

we first re-write the objective function as a scalar-valued function
of the parameter vector y using the same approach as [3]. The pa-
rameter vector y represents the vectorization of the factor matrices,
with the weights λ absorbed into the first factor matrix.

y =



vec (λA(1))
vec (A(2))
...

vec (A(n))


As a result, the gradients of the objective function can be formed by
vectorizing the partial derivatives with respect to each component
of this parameter vector:

∇f (y) =

[
vec (

∂ f

∂A(1)) · · ·vec (
∂ f

∂A(n)
)

]

For notational convenience, we also represent the matricized
form of the tensor decomposition as:

⟦λ;A(1) , · · · ,A(N)⟧(n) = λA(n) (A(−n))T

where

A(−n) = A(N) ⊙ · · · ⊙ A(n+1) ⊙ A(n−1) ⊙ · · · ⊙ A(1) .

Thus, the partial derivatives of Equation 2 with respect to the factor
matrix, A(n) are the following:

∂ f

∂A
(n)
r

=
[
1 − X (n) ⊘ Z (n)

]
a
(−n)
r +

β1
∑
p,r

max (0,д(a(n)r ,a
(n)
p))

∂д(a
(n)
r ,a

(n))
p

∂a(n)r

+

β2a
(n)
r + β3y

1
1 + exp(yA(1)

r)
θ

(3)

We refer the reader to [16, 21] for the detailed derivation of the
gradients.

For large datasets, the calculation of the derivatives simultane-
ously for all modes is computationally expensive. Thus, SGranite uses
an SGD approach to avoid storing the entire tensor in memory. For
faster convergence, we adopt a variant of SGD named Adaptive
Moment Estimation (Adam) to adaptively update the learning rate
[23]. Our preliminary experiments on a single machine showed
that SGD with Adam converged faster and more accurately than
using a fixed learning rate.

Algorithm 1 SGD updating process
1: for l = 1 : L do
2: Randomly select n samples
3: Calculate the gradients for samples using Equation 3
4: Compute the decaying averages of past and past squared

gradients
5: Take a step using averaged gradients
6: end for

662

Figure 2: A graphical example of our SGranite: Suppose there are 2 workers, we will have 8 blocks and 4 strata after partition.
We run this process iteratively until convergence. In each epoch, start from strata one, each worker runs SGD for its own
assigned block in parallel. Check the convergence until all strata are iterated. We repeat above algorithm again if the stopping
criteria is not satisfied. All intermediate results are saved as Resilient Distributed Datasets (RDD) collections and cached in
memory.

3.4 Parallel Algorithm using Spark
Although SGD scales well to sparse data, we would like to distribute
the computation to achieve results faster. FlexiFact proposed dis-
tributing the computation by dividing the tensor such that no two
blocks share any elements (along with any dimension) [6]. Thus,
the SGD algorithm can be run in parallel on each block without
sacrificing accuracy. We refer the reader to [6, 12] for detailed proof
of convergence. SGranite uses the same approach to distribute the
non-zero elements of the count tensor using this tensor partition.
However, we note several main differences between our framework
and Flexifact: (1) support for sparse, count data by using an appropri-
ate objective function (KL divergence), (2) flexibility to incorporate
a variety of constraints beyond sparsity and non-negativity, and (3)
distributed computation using Apache Spark.

Unlike SGranite, FlexiFact uses the Hadoop Map-Reduce plat-
form to distribute the data collection across multiple nodes. Un-
fortunately, a Hadoop workflow spends an exorbitant amount of
time on disk operations, as it needs to read and write intermedi-
ary results on the disk. On the other hand, Apache Spark [40] has
been proposed as an alternative that eliminates unnecessary disk
operations for iterative algorithms. By performing the data analytic
operations in-memory and in near real-time, Spark can achieve
lower computation times. Thus, SGranite is developed using Spark
to distribute the computation.

3.4.1 Tensor Partition. First, we define a stratum as a set of in-
dependent blocks, and we denote the number of blocks in each
stratum by d . Suppose we have d available workers, in order to
iterate all regions of X, we need d3 blocks and thus d2 strata. For a
stratum s we have d blocks Z (s)

i for i = 0, 1, · · · ,n − 1. A detailed

partition function for a size of I × J ×K tensor X is provided below:

bi = (i ⌈I/d⌉, (i + 1)⌈I/d⌉)
bj = (j ⌈J/d⌉, (j + 1)⌈J/d⌉)

bk = (k ⌈K/d⌉, (k + 1)⌈K/d⌉)
js,i = (j + s)

ks,i = (j + s) mod d

Z
(s)
i = X(bi ,bjs,i ,bks,i)

(4)

Figure 2 provides an example of how to divide a count tensor for 2
available workers.

3.4.2 Block Parallelization. Prior to introducing how SGranite it-
eratively solves the optimization problem in parallel, we introduce
some definitions. A full epoch is defined as when the algorithm
has seen all the d3 blocks in the tensor. Since we need d2 strata
to cover all the blocks, we need to perform d2 inner iterations.
Therefore, we refer to each stratum training as a single inner it-
eration. Thus, in SGranite, the computation of each stratum is
performed sequentially in each epoch. But for each stratum, we
run SGD on the d2 blocks in parallel. After each inner iteration, we
update the factor matrices and use them as the initialization for
the next stratum. Figure 3 provides an example of training using a
single stratum. Upon the completion of an epoch (all strata have
been run), the factor matrices are combined from all the workers,
and then re-normalized for identifiability. The normalization can
be performed for a user-specified mode, otherwise it defaults to the
first mode. Convergence is checked between epochs by measuring
the changes in the KL divergence to see if it is below a given toler-
ance. The details for the parallel-version of SGranite is described
in Algorithm 2.

3.4.3 Spark Implementation Details. The non-zero elements of the
count tensor are stored in a list using the coordinate format and

663

Figure 3: A graphical example of one stratum training:
Given one stratum of training data and factor matrices
A(1) ,A(2) ,A(3) , we run SGD on each block in parallel. Then
factormatricesA(1) ,A(2) ,A(3) are updated and used as the ini-
tialization for the next stratum training.

Algorithm 2 SGranite

1: Randomly initialize ⟦λ;A(1) ; · · · ;A(N)⟧
2: Partition the tensor and construct d2 stratas using 4
3: form = 1 : M do
4: for l = 1 : d2 do
5: Assign each block in lth strata to a worker
6: Each worker runs Algorithm 1 in parallel
7: Update the factors ⟦λ;A(1) ; · · · ;A(N)⟧
8: end for
9: Gather results from each worker
10: Normalize factor matrices according to the specified mode
11: if converged then
12: break
13: end if
14: end for
15: Return ⟦λ;A(1) ; · · · ;A(N)⟧

loaded as Resilient Distributed Datasets (RDDs), and then it is
shared throughout our cluster as a broadcast variable. A broadcast
variable in Spark is immutable, meaning that it cannot be changed
later on. This may seem inconvenient but it truly suits our case
since we only need to read values from the tensor to calculate
gradients in each iteration.

We do not broadcast factor matrices since we need to update
them in each iteration. Due to our partition function, each worker
has a chance to update factors matrices with different boundaries.
The best way is to partition factor matrices using Block ID. In this
way, we can reduce the memory and communication cost. Specifi-
cally, we applied map and aggregateByKey functions to partition
the factor matrices into blocks. The function map transforms each
entry of the sparse tensor into an element in the RDD whose key
is a block ID. Then aggregateByKey groups each block together
and persists in memory. In each inner iteration, we use groupWith
to build a stratum partitioned using partitionBy and then use
mapPartitions to assign tasks to each node.

We found storing factor matrices RDDs and partitioned result
in a significant acceleration, but not doing this will cause virtual
memory issues in our experiments. Our experiments suggest such
a design will enable us to obtain better speed-up and scalability.

4 EXPERIMENTS AND RESULTS
In this section, we first provide descriptions for two real-world
health datasets. We then give an overview of baseline methods and
provide qualitative and quantitative results.

4.1 Datasets
We use the following two publicly available datasets:
• Influenza: Using Google Flu Trends historical data2 from
2003 to 2015, we generated a tensor to uncover temporal
influenza patterns that are unique and similar across multiple
states. For each region in the United States, we collected the
number of search queries related to influenza on a weekly
basis over 11 years. The resulting tensor is 12 regions × 52
weeks × 11 years. Although the data quality has been shown
to be low Olson, Donald R et al. [28], this dataset is used to
demonstrate the feasibility of SGranite on search data.
• MIMIC-III [20]: MIMIC-III is large database containing de-
identified health data associated with approximately sixty
thousand admissions of critical care unit patients from the
Beth Israel Deaconess Medical Center collected between
2001 and 2012. For each patient, we extract medications and
the International Classification of Diseases (ICD-9) diagnosis
codes. ICD-9 codes are aggregated using Clinical Classifi-
cation Software (CCS) categories3, a standard preprocess-
ing step in healthcare analysis. Similarly, medications are
grouped using the Anatomical Therapeutic Chemical (ATC)
Classification via the RxNorm RESTful Web API, a web ser-
vice developed by the National Library of Medicine4. The
aggregation step results in a 38159 patient × 234 diagnosis
× 511 medication tensor.

4.2 Baseline Approaches
We will compare SGranite to both centralized and distributed CP
decomposition methods.
• CP-APR [8]: The first algorithm proposed formodeling sparse
count data using a Poisson distribution. There is no support
for constraints, and the updates are performed using multi-
plicative updates. The algorithm has been ported to Python
by the authors of [16].
• Granite [16]: A centralized extension of CP-APR that incor-
porates the angular penalty, ℓ2, and the simplex projection
as regularization terms. The authors shared a python imple-
mentation of Granite fit using SGD.
• FlexiFact [6]: A distributed algorithm based on the DSGD
approach that factorizes a coupled tensor and matrix using
a similar partition method. However, it uses least squares
as an objective and only supports non-negativity and ℓ1
constraints. For a fair comparison, we implemented the al-
gorithm in Spark according to the paper.

2https://www.google.org/flutrends
3The mapping from ICD-9 to CCS can be found at https://www.hcup-us.ahrq.gov/
toolssoftware/ccs/ccs.jsp.
4Details for the RxNorm RESTful Web API can be found at https://mor.nlm.nih.gov/
download/rxnav/RxNormAPIREST.html.

664

https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://mor.nlm.nih.gov/download/rxnav/RxNormAPIREST.html
https://mor.nlm.nih.gov/download/rxnav/RxNormAPIREST.html

(a) Influenza (b) MIMIC

Figure 4: Comparison of two distributed and two non-distributed CP models using KL divergence. SGranite converges in less
epochs than the other methods. The negative KL divergence arises from the fact that the observed values are not probability
measurements.

4.3 Implementation and Hardware Details
SGranite is implemented in Python and the source code is publicly
available5. The experiments were conducted on AWS. The cluster
has one master and three worker nodes. Each node has four virtual
cores and 16 GB of RAM. Results in our paper were reported using
4 workers.

4.3.1 Hyperparameter tuning. The logistic regularization penalty
β3, simplex projection β2 and the angular penalty β1 were set as
0.06, 0, and 0.02, respectfully. θn for angular penalty for each mode,
the learning rate, and batch sizes were selected as 0.9, 0.0001, and
200 respectively. All hyperparameters were chosen based on a grid
search over values.

4.4 Results
4.4.1 Scalability and Accuracy. First, we assess the quality of the
approximation (measured by KL divergence) for SGranite and the
other baseline methods. Figure 4 shows the KL divergence as the
function of the number of epochs on both datasets. For the central-
ized algorithms (CP-APR and Granite), each epoch corresponds to
a full iteration. The plots demonstrate that SGranite converges at
least 4× faster than FlexiFact and also faster than the centralized
algorithms. Moreover, the quality of the approximation is better
than any of the existing methods. This suggests that SGD-based
methods may help escape undesirable local minima (compared to
CP-APR). The figure also highlights the importance of appropriately
modeling the data distribution as opposed to using the least-squares
loss (FlexiFact) may not yield the best approximation.

Next, we evaluate the scalability of our algorithm with respect
to the number of workers. We calculate the speed-up as the ratio
between the total execution time and the sequential execution time.
Figure 5 demonstrates the speed-up of SGranite with respect to
the number of workers. As can be seen in the figure, the speed up
5https://github.com/hehuannb/SGranite-WWW

for the MIMIC tensor is very close to the ideal speed-up, as it is
relatively large. However, there is a limited improvement on the
Influenza tensor, a small dataset. This is due to the communication
cost that is incurred in coordinating the different nodes. We note
that because SGranite caches the updated factor matrices in mem-
ory to minimize disk accesses between consecutive iterations, it
is able to scale to a large dataset and a large number of workers.
Since this speed-up would not be possible on a system like Hadoop,
we do not provide a comparison with FlexiFact.

Figure 5: The speed-up curve for both datasets. It shows anal-
ysis of large datasets will gain an obvious speed up by using
SGranite.

4.4.2 Qualitative and Quantitative Assessment of the Constraints.
To examine the impact of the constraints, we first compare the re-
sults from SGranite on the influenza dataset both with and without
the angular and simplex regularization terms. Figure 6a shows the

665

(a) No angular penalty and simplex projection (β1 = β2 = 0)

(b) Angular penalty and simplex projection constraints

Figure 6: A comparison of the learned latent factors with and without constraints using R = 3. Year from 2003 to 2015

latent factors learned without the regularization terms, and Figure
6b shows the latent factors learned with the regularization terms.
From these plots, we observe that the learned factors without regu-
larization are highly correlated and can be difficult to distinguish
from one another. In Figure 6a, it is hard to discern any noticeable
pattern across the weeks and the different regions. In compari-
son, Figure 6b demonstrates the potential of incorporating both
diversity and sparsity. We can observe that factor 2 predominantly
captures the peak influenza season that occurs both towards the
end of December and in mid-February in region 7, whereas factor
3 is slightly delayed and captures the influenza trend in regions 1
and 10. Furthermore, all three factors capture the peak in influenza
season that occurs in late December and early February through
March.

Next, we quantitatively assessed the impact of the logistic re-
gression and angular penalty on the MIMIC-III dataset. To evaluate
the discriminative power and distinctiveness of the learned factors,
we used the in-hospital mortality cohort similar to that proposed
in [21]. We used 37,000 patients, including all 5,014 patients who
died during admission. We split our dataset into 80% training and
20% testing. We measured the discrimination on the test set using
the area under the receiver operating characteristic curve (AUC).
Distinctiveness is measured using the average overlap or the degree
of overlapping between latent factors. It is defined as the average
of cosine similarities between all latent factor pairs:

666

Avg Overlap =
∑R
r1
∑R
r2>r1 cos(a

(2)
r1 ,a

(2)
r2) + cos(a(3)r1 ,a

(3)
r2)

R (R − 1)
Table 3 summarizes the AUC, total computation time (or running

time), and the average overlap. We observe that SGranite can not
only accelerate the tensor decomposition but also provides better
prediction than other baseline methods. Moreover, the average over-
lap is smaller than Granite even without the angular constraints.
This suggests that the partition function may also have some bene-
ficial impact in terms of reducing overlapping factors. Moreover,
incorporating the angular constraints further helps the discrim-
inative ability of the model. This suggests that adding diversity
constraints to yield less correlated latent features may also help the
resulting predictive model. Therefore, SGranite supports a variety
of flexible constraints and yields improved predictive performance.

Model AUC Time Avg Overlap

CP-APR [8] 0.63 > 1 hour 0.3
FlexiFact [6] 0.65 35 mins 0.37
Granite [16] 0.67 > 1 hour 0.3
SGranite (β1 = 0) 0.68 20 mins 0.1
SGranite (β1 > 0) 0.71 25 mins 0.07

Table 3: Table of AUC, running time, and average overlap-
ping using differentmethods. The highest AUCvaluemeans
extracted phenotypes have stronger discrimination. The
lowest running time indicates our distributed method can
significantly accelerate the computation time. Compared to
CP-APRand FlexiFact, adding angular penalty improved the
distinction significantly.

4.4.3 Case Study 1: Flu Patterns. We provide a further qualitative
assessment of our learned latent patterns from the influenza dataset.
First, we comment on the ability to capture the overall flu season
trends. Although flu season can vary across region to region, the
flu season is typically between October through May (week 43 to
week 22) [1]. We observe this phenomenon even with and without
angular penalty constraints as illustrated in Figure 6. The variance
in region and slight shifts in the week are further evident when
angular penalty and simplex projection constraints are present (Fig-
ure 6b). We can see that some of the regions are present only in 1 of
the factors. Moreover, slight shifts along the week are observed (top
chart), depending on which latent factor with the higher elements
occurring between weeks 48 and 13. This provides further confir-
mation that each region will have slightly different times when
influenza will be more prominent.

We also assessed the learned flu patterns with FlexiFact, the
other distributed CP algorithm that supports non-negativity and
sparsity. Figure 7 presents the learned latent factors using FlexiFact.
We observe that the peak level regions that are discovered using
SGranite are more consistent with the CDC influenza positive
test results, shown in Figure 8. The peaks that are discovered by
FlexiFact are inconsistent with the observed CDC reports. FlexiFact
factors suggest two different peaks, one between weeks 8-10 and

one 18-20, whereas the CDC reports note a peak around 7-9 and
by week 20, it has mostly died down. Moreover, we observe that
the FlexiFact latent factors are more difficult to interpret as the
region and year factors are fairly correlated. We also compared
with the learned factors from a previous study [13] and found our
learned patterns were more consistent with the observed results.
This suggests that the incorporation of constraints not only im-
proves interpretability but also provides robustness to noise.

4.4.4 Case Study 2: Phenotypes. We conducted a second case study
to examine SGranite’s ability to extract discriminative and distinct
clinical characteristics from the MIMIC III dataset. The identifica-
tion of clinical phenotypes from EHR data can help advance our
understanding of disease risk and drug response as well as support
the practice of precision medicine on a national scale [33, 38].

For clinicians, diversity is important to discover rare phenotypes
in a patient population. Moreover, diverse phenotypes are likely
easier to implement, as a clinician may find it difficult to rank-order
or apply phenotypes that have substantial overlap. In addition,
discriminative phenotypes are better predictors of mortality (shown
in Table 3) and thus can be used to assist the decision-making
process.

Table 4 presents the learned phenotypes that are important
where importance is determined based on the magnitude of the
phenotypes (or λr). Thus, these are the three sets of patient char-
acteristics at which diagnosis and medication are dominant. First,
we observe that the learned phenotypes have limited number of
overlapping elements. In table 4, the most significant phenotype
(λ1) captures acute complications with heart diseases which can
be riskier. In particular, acute respiratory distress syndrome has a
mortality rate of 30-50% and is associated with long hospital stays
[27]. The third phenotype (λ3) captures more chronic diseases such
as heart valve disorder, leukemias, and osteoarthritis. In addition,
we observe that most medication codes in Table 4 are associated
with diagnosis codes above. For example, potassiuman chloride and
practolol are commonly used to lower blood pressure in hyperten-
sives [10, 37]. An ACE inhibitor is used primarily for the treatment
of hypertension and congestive heart failure [26]. And magnesium
carbonate has shown to be effective for chronic kidney diseases
and intracranial injury [5, 35].

5 CONCLUSION
In this paper, we presented a distributed, diverse, non-negative ten-
sor decomposition framework that supports a variety of constraints
including an angular penalty to encourage diversity and a simplex
projection to encourage sparsity while scaling to large tensors. By
imposing such regularization terms, SGranite successfully extracts
meaningful latent factors in two real-world use cases. Moreover,
by using Spark, SGranite successfully reduces processing time by
dramatically reducing the workload and high communication cost.
In addition, SGranite improves binary prediction tasks by incor-
porating logistic supervision into the fitting process. In the future,
we plan to develop a distributed algorithm that can handle linear
regression problem and also an extension that can use outside data
sources as the guidance information.

667

Figure 7: Latent factors obtained using Flexifact. Year from 2003 to 2015

Figure 8: This figure is downloaded from CDC, it shows the actual influenza positive tests reported to CDC in 2010-2011, week
ending Oct 01, 2001.

Phenotype 1: λ1 = 87 Phenotype 2: λ1 = 79 Phenotype 3: λ3 = 77
Respiratory distress syndrome Coronary atherosclerosis & other heart disease Heart valve disorders
Acute cerebrovascular disease Intracranial injury Intracranial injury
Coronary atherosclerosis & other heart disease Congestive heart failure; nonhypertensive Leukemias
Hypertension w/ complications & secondary hypertension Acute and unspecified renal Osteoarthritis
Potassium chloride Oxyphenisatine Practolol
Sodium chloride Adrenergics, inhalants Magnesium carbonate
Omeprazole ACE inhibitors Anilides
Potassium chloride Nitroprusside Sodium chloride

Table 4: Table of top 3 phenotypes with high λ. Upper four rows are diagnosis codes and four rows below are medication codes
correspondingly

6 ACKNOWLEDGEMENT
This work was supported by the National Science Foundation
award IIS-#1838200 and the National Institute of Health award
1K01LM012924-01.

REFERENCES
[1] [n. d.]. Flu Season. https://en.wikipedia.org/wiki/Flu_season

668

https://en.wikipedia.org/wiki/Flu_season

[2] [n. d.]. National Institutes of Health. https://allofus.nih.gov/
[3] EvrimAcar, DanielMDunlavy, and Tamara GKolda. 2011. A scalable optimization

approach for fitting canonical tensor decompositions. Journal of Chemometrics
25, 2 (Feb. 2011), 67–86.

[4] Ardavan Afshar, Ioakeim Perros, Evangelos E Papalexakis, Elizabeth Searles,
Joyce C Ho, and Jimeng Sun. 2018. COPA: Constrained PARAFAC2 for sparse
& large datasets. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. 793–802.

[5] M F Arango and J H Mejia-Mantilla. 2006. Magnesium for acute traumatic brain
injury.

[6] Alex Beutel, Partha Pratim Talukdar, Abhimanu Kumar, Christos Faloutsos, Evan-
gelos E Papalexakis, and Eric P Xing. 2014. FlexiFaCT - Scalable Flexible Factor-
ization of Coupled Tensors on Hadoop. SDM (2014).

[7] J Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual differences in
multidimensional scaling via an n-way generalization of “Eckart-Young” decom-
position. Psychometrika 35, 3 (1970), 283–319.

[8] Eric C Chi and Tamara G Kolda. 2012. On tensors, sparsity, and nonnegative
factorizations. SIAM J. Matrix Anal. Appl. 33, 4 (2012), 1272–1299.

[9] John C Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. 2008.
Efficient projections onto the l1-ball for learning in high dimensions. ICML
(2008).

[10] Tommaso Filippini, Federica Violi, Roberto D’Amico, and Marco Vinceti. 2017.
The effect of potassium supplementation on blood pressure in hypertensive sub-
jects: A systematic review and meta-analysis. International Journal of Cardiology
230 (March 2017), 127–135.

[11] Hancheng Ge, Kai Zhang, Majid Alfifi, Xia Hu, and James Caverlee. 2018. DisTenC:
A aistributed algorithm for scalable tensor completion on Spark. In Proceedings
of the 2018 IEEE 34th International Conference on Data Engineering. 137–148.

[12] Gemulla, Rainer, Nijkamp, Erik, Haas, Peter J, and Sismanis, Yannis. 2011. Large-
scale matrix factorization with distributed stochastic gradient descent. ACM, New
York, New York, USA.

[13] Michael Joseph Haass, Mark Hilary Van Benthem, and Edward M Ochoa. 2014.
Tensor analysis methods for activity characterization in spatiotemporal data. Tech-
nical Report.

[14] Harshman, R A. 1970. Foundations of the PARAFAC procedure: Models and
conditions for an" explanatory" multimodal factor analysis. (1970).

[15] Jette Henderson, Ryan Bridges, Joyce C Ho, Byron CWallace, and Joydeep Ghosh.
2017. PheKnow-Cloud: A Tool for Evaluating High-Throughput Phenotype
Candidates using OnlineMedical Literature. AMIA Joint Summits on Translational
Science proceedings. AMIA Joint Summits on Translational Science 2017 (2017),
149–157.

[16] Jette Henderson, Joyce C Ho, Abel N Kho, Joshua C Denny, Bradley A Malin,
Jimeng Sun, and Joydeep Ghosh. 2017. Granite - Diversified, Sparse Tensor
Factorization for Electronic Health Record-Based Phenotyping. ICHI (2017).

[17] Jette Henderson, Bradley A Malin, Joshua C Denny, Able N Kho, Jimeng Sun,
Joydeep Ghosh, and Joyce C Ho. 2019. CP Tensor Decomposition with Cannot-
Link Intermode Constraints. In SDM.

[18] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble - high-throughput
phenotyping from electronic health records via sparse nonnegative tensor fac-
torization. KDD (2014).

[19] Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, and Brilliant L.
2008. Detecting influenza epidemics using search engine query data. Nature 457,
7232 (2008).

[20] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger GMark. 2016. MIMIC-III, a freely accessible critical care database. Scientific
data 3 (2016), 160035.

[21] Yejin Kim, Robert El-Kareh, Jimeng Sun, Hwanjo Yu, and Xiaoqian Jiang. 2017.
Discriminative and Distinct Phenotyping by Constrained Tensor Factorization.

Scientific Reports 7, 1 (April 2017), 1114.
[22] Yejin Kim, Jimeng Sun, Hwanjo Yu, and Xiaoqian Jiang. 2017. Federated Tensor

Factorization for Computational Phenotyping. KDD (2017), 887–895.
[23] Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-

mization. arXiv.org (Dec. 2014), arXiv:1412.6980. arXiv:cs.LG/1412.6980
[24] Kolda, Tamara G and Bader, Brett W. 2009. Tensor Decompositions and Applica-

tions. SIAM Rev. 51, 3 (2009), 455–500.
[25] V Lampos, A C Miller, S Crossan, C Stefansen Scientific reports, and 2015. [n.

d.]. Advances in nowcasting influenza-like illness rates using search query logs.
nature.com ([n. d.]).

[26] ECK Li, B S Heran, JM Wright Cochrane Database of, and 2014. [n. d.]. An-
giotensin converting enzyme (ACE) inhibitors versus angiotensin receptor block-
ers for primary hypertension. cochranelibrary.com ([n. d.]).

[27] FCCP Nathaniel Marchetti, DO. 2018. Acute Respiratory Distress
Syndrome (ARDS) | CHEST Foundation. Retrieved January 2018
from https://foundation.chestnet.org/patient-education-resources/
acute-respiratory-distress-syndrome-ards/

[28] Olson, Donald R, Konty, Kevin J, Paladini, Marc, Viboud, Cécile, and Simonsen,
Lone. 2013. Reassessing Google Flu Trends Data for Detection of Seasonal and
Pandemic Influenza - A Comparative Epidemiological Study at Three Geographic
Scales. PLoS Computational Biology 9 (2013), e1003256–.

[29] Evangelos E Papalexakis. 2016. Automatic Unsupervised Tensor Mining with
Quality Assessment. In Proceedings of the 2016 SIAM International Conference on
Data Mining. Society for Industrial and Applied Mathematics, Philadelphia, PA,
711–719.

[30] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. 2015.
ParCube - Sparse Parallelizable CANDECOMP-PARAFAC Tensor Decomposition.
TKDD 10, 1 (2015), 1–25.

[31] Neal Parikh, Stephen Boyd, et al. 2014. Proximal algorithms. Foundations and
Trends® in Optimization 1, 3 (2014), 127–239.

[32] Philip M Polgreen, Yiling Chen, David M Pennock, and Forrest D Nelson. 2008.
Using Internet Searches for Influenza Surveillance. Clinical Infectious Diseases
47, 11 (2008), 1443–1448.

[33] R L Richesson,WEHammond,MNahm Journal of the, and 2013. [n. d.]. Electronic
health records based phenotyping in next-generation clinical trials: a perspective
from the NIH Health Care Systems Collaboratory. academic.oup.com ([n. d.]).

[34] Sidiropoulos, Nicholas D, De Lathauwer, Lieven, Fu, Xiao, Huang, Kejun, Pa-
palexakis, Evangelos E, and Faloutsos, Christos. 2016. Tensor Decomposition for
Signal Processing and Machine Learning. CoRR stat.ML, 13 (2016), 3551–3582.

[35] David M Spiegel, Beverly Farmer, Gerard Smits, and Michel Chonchol. 2007.
MagnesiumCarbonate Is an Effective Phosphate Binder for Chronic Hemodialysis
Patients: A Pilot Study. Journal of Renal Nutrition 17, 6 (2007), 416–422.

[36] Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C Denny, Abel N Kho, You
Chen, Bradley A Malin, and Jimeng Sun. 2015. Rubik - Knowledge Guided Tensor
Factorization and Completion for Health Data Analytics. KDD (2015), 1265–1274.

[37] Gavin WK Wong, Heidi N Boyda, and James M Wright. 2016. Blood pressure
lowering efficacy of beta-1 selective beta blockers for primary hypertension.
Cochrane Database of Systematic Reviews (2016).

[38] Pranjul Yadav, Michael Steinbach, Vipin Kumar, and György J Simon. 2018. Min-
ing Electronic Health Records (EHRs) - A Survey. ACM Comput. Surv. (2018).

[39] Shihao Yang, Mauricio Santillana, John S Brownstein, Josh Gray, Stewart Richard-
son, and S C Kou. 2017. Using electronic health records and Internet search
information for accurate influenza forecasting. BMC Infectious Diseases 17, 1
(May 2017), 89.

[40] M Zaharia, R S Xin, P Wendell, T Das Communications of the, and 2016. [n. d.].
Apache spark: a unified engine for big data processing. dl.acm.org ([n. d.]).

[41] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the
elastic net. J. R. Stat. Soc. Series B Stat. Methodol. 67, 2 (2005), 301–320.

669

https://allofus.nih.gov/
http://arxiv.org/abs/cs.LG/1412.6980
https://foundation.chestnet.org/patient-education-resources/acute-respiratory-distress-syndrome-ards/
https://foundation.chestnet.org/patient-education-resources/acute-respiratory-distress-syndrome-ards/

	Abstract
	1 Introduction
	2 Background and Notation
	2.1 Tensors
	2.2 Tensor Decompositions

	3 SGranite
	3.1 General Optimization Problem
	3.2 Example of Useful Regularization Terms
	3.3 SGD Updates
	3.4 Parallel Algorithm using Spark

	4 Experiments and Results
	4.1 Datasets
	4.2 Baseline Approaches
	4.3 Implementation and Hardware Details
	4.4 Results

	5 Conclusion
	6 Acknowledgement
	References

