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Abstract—The rapid growth in the collection of high-
dimensional data has led to the emergence of tensor decomposi-
tion, a powerful analysis method for the exploration of such data.
Since tensor decomposition can extract hidden structures and
capture underlying relationships between variables, it has been
used successfully across a broad range of applications. However,
tensor decomposition is a computationally expensive task, and
most existing methods developed to decompose large tensors
require expensive computing hardware or high-performance
computing environment. Moreover, existing approaches focus
solely on numeric data, and may not yield desirable results for
binary or count data. Therefore, we propose FAST-CP, a novel
algorithm to accelerate the convergence of the stochastic gradient
descent based CANDECOMP/PARAFAC (CP) decomposition
model through a new extrapolation method. Our algorithm can
model a variety of tensor data types, accelerates convergence in
terms of speed and quality, and improves the learning stability of
stochastic gradient descent. Our empirical results on three real-
world datasets demonstrate that FAST-CP decreases the total
computation time while providing accurate results without neces-
sitating a high-performance computing platform or environment.

Index Terms—Tensor Decomposition, gradient descent,
stochastic gradient descent, extrapolation, acceleration

I. INTRODUCTION

Tensor, or N -way array, is a powerful representation that
encodes the relationship between N dimensions. These multi-
way arrays can then be factored to identify the underlying
patterns in the data. The CANDECOMP/PARAFAC (CP)
decomposition [1] is a popular model due to its intuitive output
structure and uniqueness property. Under CP decomposition, a
dataset with three modes that is stored as an I×J×K tensor X
is factorized as a sum of multi-way outer (rank-one) products,
X =

∑R
r=1 A

(1)
r ◦ A(2)

r ◦ A(3)
r , where A

(1)
r ,A

(2)
r ,A

(3)
r are

column vectors of size I, J,K, respectively, that represent
latent data concepts. Due to its simplicity and reliability, vari-
ous domains have used CP decomposition to identify patterns
including urban computing, network analysis, computer vision,
healthcare, and criminology [2], [3].

The most popular approach for solving the sum of squared
error formulation is the alternating least squares (ALS)
method. Conceptually and numerically simple, it provides
astonishingly good results in many cases if employed with care
[4]. However, the ALS method requires a significant amount

of memory. To address the memory limitations, scalable ALS-
based algorithms have been proposed yet often require a high-
performance computing environment (e.g., Spark, MapRe-
duce). Such computational requirements make CP decompo-
sition difficult for practitioners to readily adopt. For example,
in the healthcare setting, there is limited access to such high-
performance systems and data cannot be transferred due to
patient privacy concerns.

Another limitation of CP-ALS is the inability to model
non-numeric data (e.g., count or binary). Several studies
show that non-standard choices of the scalar loss function
yield more reasonable results and are more appropriate for
different types of data [5]–[8]. For these loss functions, var-
ious optimization-based algorithms can be adapted including
Conjugate Gradient, Gauss-Newton, Levenberg-Marquardt and
limited-memory BFGS algorithms (see [4], [9] for a compar-
ison of these methods). Unfortunately, as shown in [9], each
gradient step is essentially as expensive as an ALS step.

Recently, several stochastic gradient descent (SGD) based
algorithms have been proposed [10]–[13]. These methods
randomly select samples from the tensor at each iteration and
optimize the factor matrices based on these entries, thereby
circumventing the formation of the dense tensor needed by
the full gradient. This is particularly beneficial for performing
large-scale tensor decomposition with limited computing re-
sources. Moreover, a gradient-based approach allows for any
arbitrary element-wise loss function that is summed across all
tensor entries. This advantage over the ALS method is critical
in many applications of CP decomposition as the data can
be described by different distributions (e.g., Binary, Gaussian,
Poisson). Although SGD-based algorithms have been proved
to be a promising approach, they often require a significantly
large number of iterations to converge to an optimal point. As
a result, these algorithms often exhibit very poor convergence
properties. Compared to ALS, SGD performs updates with less
computational cost, but is less accurate. In addition to reducing
the convergence speed, noise in the gradient makes SGD-
based algorithms harder to tune. Indeed, it has been shown
that the stochastic gradient method with a constant stepsize
only converges to a ball around the optimum.

To address the limitations of existing SGD-based algorithms
mentioned above, we propose FAST-CP, an accelerated SGD-
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based CP decomposition model for large-scale tensors on a
personal computer. Our model accelerates the convergence
speed by mixing past iterates in a systematic fashion and
decreases variance of the stochastic gradients. FAST-CP is up
to 4 times faster than the state-of-the-art tensor SGD algorithm
[10] across three different datasets, and can execute in a
reasonable time for large datasets. Our contribution can be
summarized as follows:

• Efficient extrapolation step: We propose a computation-
ally cheap technique that we call extrapolation to speed
up the convergence of stochastic gradient updates for
large-scale tensor CP decomposition with various loss
functions.

• Improved convergence: While SGD is memory efficient,
it usually performs poorly in terms of convergence rate
and quality. We illustrate how extrapolation of gradient
sequences can fix this issue and yield better factor matri-
ces.

• Robustness: We show that FAST-CP improves the learn-
ing stability and lowers the variance of its base optimizer
with negligible computation and memory cost.

• Generalizability: We empirically demonstrate
FAST-CP can significantly improve the performance of
various types of tensors and different variants of SGD
algorithms including the standard (vanilla) version and
Adam.

II. BACKGROUND

This section briefly introduces CP tensor decomposition and
related work. The list of operations and symbols used in this
paper are listed in Table I.

A. Tensor and Tensor Operations

TABLE I: Symbols and their associated definitions

Symbol Definition
X , X, x, x Tensor, Matrix, Column Vector, Scalar
1 All one matrix
X(n) n-mode matricization of a tensor X
X(r, :) rth row of X
X(:, r) rth column of X
A(n) nth factor matrix
xn nth element of vector x
‖ · ‖2, ‖ · ‖F Matrix 2 norm, Frobenius norm
∗ Hadamard (elementwise) product
� Hadamard (elementwise) division
◦ outer product
⊗ Kronecker product
� Khatri-Rao product (column-wise ⊗)

Tensors are generalizations of matrices and vectors to
higher dimensions. An N -way tensor is denoted as X ∈
RI1×I2×···×IN and each element of the tensor represents the
interactions between N types of data. Each dimension of the
tensor is referred to as a mode. Tensors can be unfolded
or flattened as a matrix, which is called matricization. X(n)

denotes the matricization of X along mode-n.

Definition 1. A rank-one N-way tensor is the outer product
of N vectors: X = a(1) ◦ a(2) ◦ · · · ◦ a(N). Each element of
a rank-one tensor is the product of the corresponding vector
elements (i.e., xi1i2···iN = a

(1)
i1
a
(2)
i2
· · · a(N)

iN
).

Definition 2. The Khatri-Rao product of two real-valued
matrices A � B of sizes IA × R and IB × R, respec-
tively, produces a matrix Z of size IAIB × R such that
Z =

[
a1 ⊗ b1 · · · aR ⊗ bR

]
, where ⊗ is the Kronecker

product.

In this paper, the matrix Zn represents the Khatri-Rao
product of all the factor matrices except A(n) such that
Zn = A(1) � · · · �A(n−1) �A(n+1) � · · · �A(N).

B. CP decomposition
The CANDECOMP / PARAFAC (CP) model [1] is one

of the most popular and well-studied tensor decomposition
methods. In CP decomposition, the observed tensor, X , is
approximated using a sum of rank-one tensors (or M):

X ≈M =

R∑
r=1

A(1)(:, r) ◦A(2)(:, r) ◦ · · · ◦A(N)(:, r). (1)

Figure 1 provides an example of the CP decomposition for
a sparse tensor, where each rank-one tensor represents a latent
factor. Fitting a CP decomposition involves minimizing an
objective function between the tensor X and a model tensor
M. In general, it takes the form of summation of element-
wise loss functions over all entries, and is chosen based on
assumptions about the underlying distribution of the data.

minimizeF (X ,M) ≡
∑

i1i2···iN

f (xi1...iN ,mi1...iN ) (2)

For the numeric data, it is common to assume that the tensor
elements follow a Gaussian distribution, which corresponds
to the least squares approximation. The objective function f
associated with the least squares approximation is defined as:

F (X ,M) =
∑
i1···iN

(xi1···iN −mi1 ···iN )2. (3)

For count data, an appropriate assumption about the un-
derlying distribution of the data is Poisson [6], [7] and the
following KL-divergence fitting function f is used:

F (X ,M) =
∑
i1···iN

(mi1···iN − xi1···iN logmi1 ···iN ). (4)

The CP decomposition with the loss function (4) is often
referred to as CP-APR [6], [7]. Using a Poisson model
leads to a much better explanation for the zero observations
encountered in sparse data, where these zeros correspond to
events that are unlikely to be observed.

For binary data, it is natural to assume the tensor elements
follow a Bernoulli distribution and the objective function f
takes the following form:

F (X ,M) =
∑
i1···iN

(log(1 +mi1···iN )− xi1···iN logmi1 ···iN ).

(5)
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Fig. 1: An illustration of CP decomposition for a sparse tensor.
Shaded squares stand for nonzeros. The original tensor is
approximated by the weighted sum of R rank-one tensors.

Both (4) and (5) require a non-negative constraint.

C. Nonlinear Acceleration Techniques

When a sequence of numbers, vectors, matrices or tensors
converge slowly, or even diverge, extrapolation techniques
can be used to transform the current sequence into a new
sequence, which, under certain assumptions, converges faster.
There exist many such sequence transformations which range
across a wide range of disciplines with varying goals and
various degree of success. For a review, see [14].

Classical acceleration techniques take a sequence
x0,x1, . . . ,xn, e.g., vectors in Rd, and produce an accelerated
sequence {t(k)n } of the form

t(k)n = a0xn + a1xn+1 + · · ·+ akxn+k, (6)

where the ai’s usually depend on k and n but satisfy the

constraint
k∑
i=0

ai = 1.

Most existing extrapolation techniques are based on the
assumption that xn satisfies a k-term kernel of the form:

a0(xn−x)+a1(xn+1−x)+· · ·+ak(xn+k−x) = 0,∀n, (7)

where x is the exact limit for the original sequence and
the scalars a0, . . . , ak and x are unknowns with a0ak 6= 0
and satisfy the constraint. (7) is called Shanks kernel in the
literature.

SGD methods with this acceleration techniques have been
shown effective for deep learning training [15], [16]. These
methods compute an extrapolated set of parameters in neural
networks by mixing the information from the past few iterates
and can dramatically reduce the number of epochs. However,
simple adoption of such techniques fails to speed up tensor
CP decomposition.

III. METHOD

Although there has been a significant recent interest on
developing scalable tensor factorization methods, most of these
methods treat data as real-valued, and are therefore inappro-
priate for handling binary and count data. Motivated by the
prevalence of different types of tensors, we present FAST-CP,
a scalable and accelerated tensor decomposition framework
which can handle numeric, binary and count-valued tensors.
We begin by explaining how SGD works for variety of CP

objective functions. Next we present our novel extrapolation
technique that improves the convergence of SGD methods and
obtains a more optimal convergence point. Then we provide
some theoretical convergence analyses to support our method.

A. Generalized CP decomposition using SGD

Gradient descent is a common technique used to deal with
CP decomposition associated with various loss functions f . If
we define Y = X −M, the partial derivative of F in Equation
(3) with respect to A(n) can be written as

∂F

∂A(n)
= −2Y(n)Zn, (8)

where Y(n) is the matricization of Y along mode-n and Zn is
the Khatri-Rao product of all factor matrices except A(n). The
operation on the right hand size of (8) is called the matricized
tensor times Khatri-Rao product (MTTKRP).

Similarly, the partial derivative of F in Equation (4) with
respect to A(n) can be written as

∂F

∂A(n)
= −(1−Xn �Y(n))Zn, (9)

and the partial derivative of F in Equation (5) with respect to
A(n) can be written as

∂F

∂A(n)
= −(1�Y(n) −Xn �Y(n))Zn, (10)

For Equations (8)–(10), even when X is sparse, Y is usually
a fully dense tensor. If S =

∏N
i=1 Ii, then the calculation

of gradients for CP decomposition involves an intermediate
sequence of N matricized-tensor times Khatri-Rao products
(MTTKRPs) with a dense tensor of size S. These operations
cost O(RS), even when X is sparse. Thus, for large-scale
tensor problems, the computational and storage costs of com-
puting the exact gradient may be infeasible.

In recent years, SGD algorithms have been proposed to
alleviate the difficulty of applying standard gradient descent
in tensor decomposition problems. To create a random sparse
instance Ỹ(n) of Y(n), one can sample K indices uniformly
with replacement. This uniform sampling is one of the most
common strategies used for fitting dense tensors. However it
may not be appropriate for sparse tensors since nonzeros will
rarely be sampled. A stratified sampling-based SGD algorithm
has recently been proposed in [10] to fix this issue. Different
from previously proposed tensor SGD algorithms [17], [18],
this algorithm samples both zero and non-zero elements of X
and constructs Ỹ as an unbiased estimation of Y .

While SGD-based algorithms are memory efficient, both
uniform sampling and stratified sampling-based approaches
often require too many iterations to converge in practice.
Moreover, the SGD-based CP algorithm can oscillate around
the minimal. Thus, we are interested in designing an algorithm
that can further accelerate SGD algorithms and yield more
accurate results.
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B. Extrapolated Stochastic Gradient Descent

Classical extrapolation methods reviewed in Section II-C
can be quite effective but they all rely heavily on some intrinsic
smoothness characteristics of the sequence. This smoothness is
expressed by either the Shanks kernel or the differential of the
function f . Preliminary experiments show that extrapolation
on factor matrices did not yield any considerable speedup. This
is because the factor matrices generated by SGD algorithms
are both random and noisy, which violates the smoothness
assumption required by classical extrapolation methods.

In the deep learning community, a similar idea called
smoothing has been explored to avoid sharp minima and obtain
better generalization performance [19], [20]. The basic idea is
to uniformly average a sample of past gradients to obtain the
so-called extragradient. In fact, these smoothing techniques
correspond to a special case in tensor SGD algorithms when
only the last gradient matrix is used to update the current factor
matrix. Since the convergence of these smoothing methods
depends on the magnitude of the extragradient and classical
nonlinear acceleration techniques can produce a gradient with
smaller norm than the extragradient, applying extrapolation
techniques on gradient sequences can lead to faster conver-
gence. In this paper, we adopt the Vector Epsilon Algorithm
(VEA) [21] framework to implement our gradient sequence
extrapolation. This framework uses the generalized matrix in-
verse to extend the scalar ε-algorithm to sequences of matrices.
The algorithm is summarized in the following formula:

ε
(i)
−1 = 0

ε
(i)
0 = ∆A

(n)
i

ε
(i)
k+1 = ε

(i+1)
k−1 +

(ε
(i+1)
k −ε(i)k )∥∥∥ε(i+1)

k −ε(i)k

∥∥∥2

F

for k > 0.
(11)

The final output of those sequences defined in ε-algorithm
represent the Shanks transforms of the original sequence
∆A

(n)
i . As soon as a new iterate ∆A

(n)
i becomes available

we can immediately compute ε
(i−1)
1 , ε

(i−2)
2 , . . .. The VEA

implementation is detailed in Algorithm 1.
After we obtain the extrapolated gradient matrix, we use it

to update the current factor matrix with the same stepsize as
the baseline optimization algorithm. Note that this is different
from VEA where the original sequence is not interlaced with
the extrapolated one. We call this extrapolated SGD method
as FAST-CP and detail its major operations in Algorithm 2.
We further extend the extrapolation idea of FAST-CP-SGDto
FAST-CP-Adamand validate its effectiveness (compared with
Adam) on CP decomposition in the experiments. When Adam
is used as the baseline optimizer, we still pass the stochastic
gradient sequence in Algorithm 1.

C. Theoretical Analysis

In this section, we provide some theoretical justifications
for the proposed method shown in Algorithm 1.

Following most convergence analyses for SGD methods
[22], [23], we make the following three assumptions for the
tensor gradient sequence:

Algorithm 1 Extrapolation of gradient sequence for mode n

1: For the first time: Initialize a table T(n) with 2k + 1
columns. Set a window size k.

2: Input: The latest gradient matrix ∆A
(n)
i and factor matrix

A
(n)
i+1, current iteration number i, table T(n)

3: Output: Updated factor matrix A
(n)
i+1, table T(n)

4: j = 1, z = 0 and an empty array Y

5: Set Y(:, 1) = ∆A
(n)
i

6: while j < 2k + 1 and j < i do
7: Compute 4ε = Y(:, j)−T(n)(:, j)
8: Calculate z = z +4ε/ ‖4ε‖2F
9: Y(:, j + 1) = z

10: Reset z = T(n)(:, j)
11: j = j + 1
12: end while
13: Set T(n) = Y and E(n) = T(n)(:, 2k + 1)
14: if i ≤ 2k and j mod 2 == 1 then # when i is too small
15: E(n) = E(n)/

∥∥E(n)
∥∥2
F

16: end if
17: Update A

(n)
i+1 := A

(n)
i+1 − γE(n)

18: return A
(n)
i+1, T(n)

Algorithm 2 FAST-CP

1: Input: N -way tensor X , batch size K, learning rate γ,
max epoch number M , number of SGD updates per epoch
I , gradient sequence length k

2: Output: CP decomposition A(1), · · · ,A(N)

3: Initialize factors A(1), · · · ,A(N)

4: while Not converged or max epoch number not reached
do

5: Shuffle indices of tensor X
6: for i = 1 : I do
7: Get samples either using uniform sampling or strati-

fied sampling
8: for all modes do # optimize all at once
9: Calculate gradients ∆A(n) according to (8)–(10)

10: Update A
(n)
i+1 = A

(n)
i − γ∆A

(n)
i

11: Update A
(n)
i+1 and T(n) according to Algorithm 1

12: end for
13: end for
14: Check convergence
15: end while
16: return A(1), · · · ,A(N)

Assumption 1 The objective function F is continuously
differentiable and the gradient of F is Lipschitz continuous
with Lipschitz constant L > 0.
Assumption 2 The stochastic gradient computed by Equations
(8)–(10) is an unbiased estimator of the true gradient.
Assumption 3 The variance of the stochastic gradients is
bounded. That is there exists a constant σ2 > 0 such that

E

[
‖ ∂F

∂A(n)
−∆A(n)‖2

]
≤ σ2
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for all modes n.
We first review the known convergence result for mini-batch

SGD on non-convex functions from [24].

Theorem 1. Under the assumptions 1-3, after T mini-batch
gradient updates, each with K samples, the mini-batch SGD
returns an iterate x which satisfies

E
[
‖∇F (x)‖2

]
≤ O

(
L(F (x0)− F ∗)

T
+
σ
√
L(F (x0)− F ∗)√

KT

)
,

where x0 is the initial guess and F ∗ is a lower bound on the
values of F .

Theorem 1 indicates that when the mini-batch size is small,
the converge rate is dominated by the term σ

√
L(F (x0)−F∗)√

KT
which has possible speedup as K increases. On the other hand,
when the mini-batch size becomes large, further increasing
the mini-batch size has little effect on the convergence as
the convergence rate will be dominated by the first term
L(F (x0)−F∗)

T . In the numerical experiments, we carefully tune
this hyperparameter and choose the optimal one for baseline
methods.

In the next theorem, we review the asymptotic convergence
for SGD with extragradients when only one worker and no
momentum term are used.

Theorem 2 (Theorem 4.4 [23]). Under the same assumptions
as in Theorem 1, when the stepsize γ ≤ 1

L , the sequence xt
generated by extragradients satisfies

E

[
1

T

T−1∑
t=0

‖∇F (xt)‖2
]

(12)

≤ 2

γT
E [F (x0)− F ∗] +

(
4γ2L2

K
+
γL

K

)
σ2, (13)

where x0 is the initial guess and F ∗ is a lower bound on the
values of F .

Although Theorem 2 cannot show that SGD with extragra-
dients achieves a speedup over mini-batch SGD, its superior
performance in terms of faster convergence and better gener-
alization has been demonstrated in various deep learning tasks
[23], [25], [26].

Figure 2 shows that the proposed method can significantly
accelerate the convergence. It shows that SGD with extra-
gradient does not yield any improvement on the tensor CP
decomposition while extrapolating on a gradient sequence with
k = 3 can significantly accelerate the convergence.

IV. EXPERIMENTS AND RESULTS

All experiments were run using Python on a Dual Socket
Intel E5-2683v3 2.00GHz CPU with 64 GB memory. 1

1Our implementation is available at https://github.com/hehuannb/fast-cp.

Fig. 2: Vector Epsilon Algorithm (VEA) is applied on the
stochastic gradient sequence for HCP dataset. Extragradient
k = 1 refers to the smoothing technique [23].

A. Datasets

We use the following three publicly available tensors that
are from small to large and consist of continuous, count and
binary data respectively.
• Human Connectome Project (HCP): Human Connectome

Project collects measurements of structural and functional
neural connections in vivo within and across individ-
uals2. We use the constructed tensor from [27]. It is
a 68 × 68 × 212 binary tensor consisting of structural
connectivity patterns among brain regions for 212 indi-
viduals. Each entry encodes the presence or absence of
fiber connections between the brain regions.

• MNIST: A dataset of handwritten numbers from 250
different people, available from the National Institute
of Standards and Technology (NIST) [28]. The MNIST
dataset contains 60,000 images in the training set, each
of size 28×28 pixels with 256 gray levels. We normalize
each element by using the global mean (0.1307) and stan-
dard deviation (0.3081). After the normalization process,
a 60000× 28× 28 numeric tensor is obtained.

• Yelp: A dataset that contains 4M ratings from 1M users in
Yelp across 149 months3. The tensor modes correspond
to 1,029,432 Yelp users, 144,072 businesses and 149
months. Each entry represents the user rating (integer
from 1 to 5) for the business. We use this dataset to
demonstrate the scalability of FAST-CP.

B. Baseline Methods

In this experiment, four baselines have been selected to
evaluate the performance. The baseline methods contain alter-
nating minimization including CP-ALS [29] and CP-APR [6],
[7] and SGD-based methods including GCP-SGD and Adam
[10].
• CP-ALS [29]: The standard method for fitting the CP

model to numeric data. The algorithm alternates among
the modes, fixing every factor matrix but A(i). CP-ALS
has a closed-form solution for each mode but requires
significant memory.

2http://www.humanconnectomeproject.org/data/hcp-project/
3http://www.yelp.com/datasetchallenge
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• CP-APR [6], [7]: An algorithm proposed for modeling
sparse count data using a Poisson distribution. This al-
gorithm employs an alternating optimization scheme that
sequentially optimizes one factor matrix while holding
the others fixed. We use the state-of-the-art CP-APR [7]
as a baseline model which uses limited-memory quasi-
Newton approximations.

• GCP-SGD [10]: An algorithm for fitting the generalized
CP decomposition using SGD. It adopts both uniform
sampling and stratified sampling strategies. When the
tensor is dense, we use the uniform sampling. When the
tensor is sparse, we choose stratified sampling since it is
more efficient and converges faster. It uses SGD as the
base optimizer.

• GCP-Adam [10]: The only difference is that GCP-Adam
uses Adam [30] as the base optimizer, which usually
converges faster than SGD in deep learning applications.

C. Experimental Specifications

1) Evaluation metrics: We use the evaluation of loss func-
tions as the measure for tensor reconstruction error, which are
defined in Equations (3), (4), and (5). We also report CPU
time (sec) to show the cost-benefit trade-off of extrapolation
step.

2) Experimental setup: The loss function is selected to
reflect the appropriate distribution for each dataset. In other
words, the Gaussian (Equation (1)), Poisson (Equation (4)),
and Bernoulli (Equation (5)) distributions are used for MNIST,
Yelp, and HCP datasets, respectively. We fix the rank, R, for
each dataset and set it to reflect the size of the tensor. The
rank is set to 60, 100, and 10, for MNIST, Yelp, and HCP
datasets respectively.

For CP-ALS and CP-APR, we set the max iteration number
as 100. For CP-ALS, the iteration stops when either the max
iteration number is reached or the change is under 1e − 4.
For CP-APR, the iteration stops when either the max iteration
number is reached or it violates the KKT condition [7]. For
SGD-based methods, whenever the loss function value fails to
decrease, we decay the learning rate by 0.1. If the loss function
value remains the same after three consecutive learning rate
decreases, the algorithm stops. Finally, uniform sampling is
used for MNIST since it is dense, while stratified sampling is
used for Yelp and HCP, which are both sparse.

D. Acceleration of CP-SGD

In this section, we evaluate the effectiveness of our extrapo-
lation framework and compare it with baseline methods on the
three datasets. All the methods use the same initialization, and
the learning rate γ is carefully tuned to yield the best results in
terms of the lowest loss value. Figure 3 summarizes the con-
vergence rate for the two SGD-based methods (vanilla SGD
and Adam) with and without our extrapolation method. As can
be seen, FAST-CP significantly accelerates the convergence
in terms of number of epochs for both SGD variants.

To better understand the computation time of the different
methods, Figure 4 plots the loss as a function of time. This

figure demonstrates that the extrapolation step is computation-
ally efficient, as it adds little time in terms of computation.
FAST-CP (with vanilla SGD) converges faster than the stan-
dard CP decomposition methods, CP-ALS and CP-APR, for
MNIST and Yelp, respectively. Moreover, the accuracy of the
solution from FAST-CP is comparable to that obtained from
the traditional methods.

We can observe that Adam can sometimes converge faster
than SGD in terms of number of epochs, however, the con-
vergence point is often less desirable than vanilla SGD. In
addition, the updates of the first moment and second moment
are not computationally efficient, and thus Adam requires
much more time. On the other hand, FAST-CP-Adam can
avoid some of the bad local minima as it smoothens the
loss surface (when compared to Adam without extrapolation).
However, FAST-CP-SGD still yields a comparable or even
better local minima.

To investigate the stability of FAST-CP, we run 10
experiments for each dataset and method and summarize
results in Table II. We make two observations from the
table. First, FAST-CP significantly outperforms its base
optimizer, both in terms of convergence and time, demon-
strating the effectiveness of the extrapolation. Second, we
can see that although FAST-CP-Adamis less accurate than
FAST-CP-SGD, the convergence point is still much better
for FAST-CP-Adamthan for Adam. It indicates that the
extrapolation step helps smoothen the loss surface of Adam.
Third, FAST-CP under different learning rates converge to
similar points for each dataset. This improvement is important
for better anytime performance in new datasets where the
learning rate is not well-calibrated.

E. Effects of hyperparameters

To better understand the optimization behaviors of
FAST-CP under different learning rates and hyperparameter
settings, we perform additional experiments varying these
values in this section.

1) Convergence using different learning rates: In the previ-
ous section, we show that FAST-CP can accelerate both SGD
and Adam under a fine-tuned learning rate. We also explored
the performance of FAST-CP under different learning rates.
We only present results of HCP here due to the space limita-
tion. Figure 5 presents different learning rates for the vanilla
SGD and Adam with and without extrapolation on the HCP
tensor. From the figure, we notice there is little discrepancy in
the convergence for FAST-CP. The impact of learning rate is
much more noticeable in the SGD-based algorithms without
extrapolation. Thus, our method improves the stability of the
decomposition and lowers the variance of its base optimizer
without incurring significant computation and memory cost.
Experiments on MNIST and Yelp exhibit similar performance.

2) Understanding the effect of extrapolation sequence
length k: One key hyperparameter used in FAST-CP is k,
the length of the extrapolation sequence. We investigate its
effect on FAST-CP in this section. Previously, we observed
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A: MNIST B: Yelp C: HCP

Fig. 3: Convergence plots for the SGD-based methods for the 3 datasets. In A, R = 60, batch size=2000, each epoch contains
3000 iterations. In B, R = 100, batch size=5000, each epoch contains 100 iterations. In C, R = 10, batch size=500, each
epoch contains 300 iterations.

A: MNIST B: Yelp C: HCP

Fig. 4: Time comparison among baseline models on three datasets. It shows that extrapolation can converge to a more optimal
point with cost of limited extra time while Adam takes much more time.

Fig. 5: Convergence under different learning rate on HCP

that extragradient (k = 1) does not offer any improvement
and using extrapolation on a length-3 gradient sequence can.
Does a larger k yield further improvement? The answer is
no. In Figure 6, we can see that a length of 3 already
provides the majority of the benefits. Not only does a larger
k incur more memory, but it even converges at a worse point.
This is reasonable because extrapolation using a larger k
leads to numerically ill-conditioned problems and generates
an unstable extrapolation. Moreover, a larger k also requires
additional computation. Therefore, we suggest k = 3 as a
robust hyperparameter for FAST-CP.

V. CONCLUSION

In this paper, we present FAST-CP, a fast and accurate SGD
tensor decomposition framework that scales to large tensors.

Fig. 6: MNIST: Effect of the hyperparameter k on convergence
of extrapolated SGD.

We proposed a simple extrapolation technique which, by
reusing past gradients and transporting them, offers excellent
performance on a variety of tensor decomposition problems.
By providing a higher quality gradient estimate that can
be plugged in the existing optimizer, we demonstrate that
FAST-CP can significantly improve the performance of SGD
and Adam, even with different learning rate.
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TABLE II: The performance comparison of different methods
on three datasets averaged over 10 different seeds

(a) MNIST

Method. Lr Loss±std (1e6) Time±std (sec.)
CP-ALS - 5.4839 ±0.0512 2016 ±41.83

GCP-SGD 1e-2 5.6819 ±0.0728 1924 ±60.84
GCP-SGD 1e-3 5.5243 ±0.0772 1956 ±47.98

GCP-Adam 1e-3 6.849 ±0.0693 4515 ±115.47
GCP-Adam 1e-4 7.1932 ±0.0713 4492 ±105.38

FAST-CP SGD 1e-2 5.5025 ±0.042 796 ±56.59
FAST-CP SGD 1e-3 5.4815 ±0.061 993 ±48.96
FAST-CP Adam 1e-3 5.6226 ±0.082 1511 ±98.45
FAST-CP Adam 1e-4 5.595 ±0.079 1813 ±104.26

(b) Yelp

Method. Lr Loss±std (1e8) Time±std (sec.)
CP-APR - 1.324 ±0.0103 9476 ±228.86

GCP-SGD 1e-10 1.657 ±0.0828 6325 ±74.52
GCP-SGD 1e-11 1.683 ±0.0659 7056 ±68.43

GCP-Adam 1e-6 1.931 ±0.2574 4159 ±180.36
GCP-Adam 5e-7 2.124 ±0.1789 4636 ±160.23

FAST-CP SGD 1e-10 1.3183 ±0.0168 3045 ±40.08
FAST-CP SGD 1e-11 1.3346 ±0.0211 3213 ±45.59
FAST-CP Adam 1e-6 1.4432 ±0.0162 5360 ±126.54
FAST-CP Adam 5e-7 1.4648 ±0.0142 4987 ±106.76

(c) HCP

Method. Lr Loss±std (1e5) Time±std (sec.)
GCP-SGD 1e-4 4.8977 ±0.0228 8.05 ±3.38
GCP-SGD 1e-5 5.5514 ±0.4972 13.30 ±5.8
GCP-SGD 1e-6 5.9177 ±0.4384 21.05 ±4.21

GCP-Adam 1e-3 5.7180 ±0.4693 9.89 ±5.84
GCP-Adam 1e-4 5.8014 ±0.4313 9.75 ±5.3
GCP-Adam 1e-5 5.8414 ±0.4513 31.27 ±7.3

FAST-CP SGD 1e-4 4.8724 ±0.0078 4.73 ±0.98
FAST-CP SGD 1e-5 4.8716 ±0.0081 4.68 ±0.96
FAST-CP SGD 1e-6 4.8719 ±0.0061 4.75 ±0.94
FAST-CP Adam 1e-3 4.8736 ±0.0082 4.98 ±1.01
FAST-CP Adam 1e-4 4.8728 ±0.0081 4.98 ±0.89
FAST-CP Adam 1e-5 4.8724 ±0.0079 4.96 ± 0.83
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