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A B S T R A C T

Distributed semantic representation of biomedical text can be beneficial for text classification, named entity
recognition, query expansion, human comprehension, and information retrieval. Despite the success of high-
quality vector space models such as Word2Vec and GloVe, they only provide unigram word representations and
the semantics for multi-word phrases can only be approximated by composition. This is problematic in bio-
medical text processing where technical phrases for diseases, symptoms, and drugs should be represented as
single entities to capture the correct meaning. In this paper, we introduce PMCVec, an unsupervised technique
that generates important phrases from PubMed abstracts and learns embeddings for single words and multi-word
phrases simultaneously. Evaluations performed on benchmark datasets produce significant performance gains
both qualitatively and quantitatively.

1. Introduction

The biomedical sciences are pioneers for open-access publication,
with the PubMed database alone indexing over 27 million journal ar-
ticles. Given the rich knowledge contained in these articles, obtaining
insights from the publications can be used to address a variety of bio-
medical problems. The sheer volume of unannotated text dwarfs that of
the annotated documents and hence it is imperative to utilize un-
supervised machine learning models to capture the semantic meaning
of words and phrases from such large corpus which in turn can be used
for various downstream biomedical tasks.

For many Natural Language Processing (NLP) tasks based on vector
space models, the text is transformed into meaningful vector re-
presentations to help improve performance. Recent efforts have in-
troduced new neural network models that can induce semantically
meaningful word representations (or embeddings) from large corpora
[1,27,36,3]. Dense, low-dimensional vector representation of words are
learned such that similar words are close in space. The ability to pre-
serve semantic and syntactic similarities between words been shown to
be very useful in a variety of NLP tasks including information retrieval
[12], part-of-speech (POS) tagging [9], text summarization [39,46],
sentiment analysis [13,24], named entity recognition (NER) [23,42],
synonym extraction [18] and relation extraction [19]. Moreover, sev-
eral biomedical domain word representations have been created from
biomedical literature [21,38] and the impact of training word vectors
on corpus from various domains for downstream biomedical tasks is
explored by [43,33].

Although word embeddings have achieved great success in word-
oriented tasks such as NER and POS tagging, they perform poorly on
phrases-oriented tasks such as Semantic Role Labeling [8]. The common
approach to train state-of-the-art embeddings such as Word2Vec [25],
GloVe [36], and FastText [3] is to learn the vector representation for
each individual word. Phrase representations are then constructed
using compositional approaches of the unigram vectors [45,47,22].
However, the compositional approaches (e.g., sums and products of the
word vectors) are often order-insensitive and fail to capture the se-
mantic meaning of the phrase [28]. Unfortunately, in the biomedical
domain, many key concepts are often expressed as multi-word phrases
[20] and thus are critical for capturing lexical semantics. Furthermore,
biomedical phrases may only be weakly compositional, or unlikely to
be expressed only based on the meaning of its part. As motivating ex-
amples, the phrases ‘Glasgow Coma scale’, ‘open reading frame’, and
‘nuclear magnetic resonance’, may not be well-expressed as a compo-
sition of the individual words. Therefore, it is important to build a
distributed representation that not only captures single words but
multi-word phrases as well.

Learning a distributed phrase and word embeddings have been
shown to be effective on a general, non-domain specific corpus [26].
Yet, one of the key challenges is to identify useful phrases. While this
task is well-studied, many of the existing works require annotation or
extensive computation to achieve good performance [4,10,35,37,44]. A
new unsupervised method has been proposed to collect over 700,000
common phrases that may be useful for biomedical NLP from PubMed
articles [20]. Unfortunately, including all possible phrases into the
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embedding model significantly impacts the computational complexity
and negatively impacts the learned representations.

We propose PMCVec, an unsupervised method that generates useful
phrases from the corpus and builds a distributed representation that
contains both single words and multi-word phrases by treating both as a
single term (or unit). In this paper, we consider a phrase to be a con-
tinuous sequence of two or more words with no stopwords or punc-
tuation marks except for a hyphen. We used a standard NLTK1 stopword
list. For example, our method obtains similar representations for the
pairs ‘hypertension’ and ‘high blood pressure’ as well as ‘myocardial
infarction’ and ‘heart attack’. We introduce a new criterion to rank the
generated phrases that balance phrase frequency, phrase length, and
the frequency of the individual words within the phrase. This step al-
lows us to select only the k-most useful phrases, where k is a hy-
perparameter that can be learned as well.

We compared our method against several existing embeddings: two
general word embedding models and two biomedical domain word
representations. Using five benchmark datasets for biomedical semantic
similarity, we show that PMCVec achieves significant improvement
over other models. We show that our distributed representation not
only captures the semantic meaning of the phrases better than com-
positional methods, but it also does not significantly degrade the single-
word representations.

This paper is organized as follows. First, we describe the various
steps in the PMCVec process including preparing the text data; gen-
erating, ranking and filtering phrases; and learning the term embed-
dings. We then describe experimental results on several biomedical
term-similarity evaluation datasets. We conclude with a discussion of
how our method compares to other similar techniques and what can be
done to improve further.

2. Methods

In this section, we present our framework for computing the dis-
tributed phrase representations. PMCVec consists of multiple steps: (1)
preprocessing the articles, (2) generating phrases from the articles
based on chunking, (3) ranking and filtering the phrases, and (4) tag-
ging the phrases and building the distributed phrase representation.
Fig. 1 depicts the entire workflow.

2.1. Preprocessing

We used titles and abstracts from all the 27 million documents in
PubMed. The National Library of Medicine produces the citation re-
cords (in XML format) for PubMed [29]. The XML files are parsed to
collect titles and abstracts. These are merged into a single large docu-
ment. We then cleaned the document by removing terms that consisted
only of numbers or special characters. For example, in the sentence “in
29 (69%) patients, the cancer cells showed a strong immunoreactivity
for PCNA” the number 29 and (69%) would be removed.

2.2. Phrase generation

The next step in the process is to identify phrases from the corpus.
Traditional techniques focus on identifying noun phrases since most
meaningful phrases are of this form. These methods use predefined
parts of speech (POS) rules or learn those rules from annotated docu-
ments to chunk the text [4,44,37]. However, such rule-based methods
usually suffer in domain adaptation and will miss out on meaningful
non-noun phrases including ‘multilocus sequence typing’, ‘calcitonin
gene related peptide’, ‘electrophoretic mobility shift assay’, ‘zollinger
ellison syndrome’, and ‘diffusion tensor imaging’. Other generic phrase
generation techniques leverage frequency statistics in document

collections by extracting all possible n-grams from the text and re-
taining the most popular concepts [35,10]. However, this result enu-
merates all the possible n-grams and does not scale well for a large
corpus. Instead, we use a conceptually simpler and more generic ap-
proach. Potential phrase boundaries are identified using stop words and
punctuation [41]. Although this eliminates the possibility of stop words
occurring in a phrase, it provides a more systematic methodology for
generating variable n-gram phrases without having to specify ahead of
time the maximum number of terms and enumerating all the possibi-
lities. Thus, with the last example sentence in Fig. 1, the potential
phrases from our chunking process are ‘patients’, ‘cancer cells showed’,
and ‘strong immunoreactivity’, and ‘PCNA’. Since our interest is to
generate meaningful phrases, we remove any single word occurrences.

2.3. Rank and filter

The third step in our workflow is to rank and filter the potential
phrases. This is a necessary step as there is no guarantee that all the
phrases generated in the previous step are meaningful. Moreover, in-
corporating all the phrases impacts the learning process in terms of
computational and memory complexity, and may degrade the dis-
tributed word representations. Thus, it is important to rank the phrases
using a metric and filtering out those that do not meet certain criteria.
Prior to ranking, we perform an initial filtering step that removes any
phrases that do not appear sufficiently in the corpus. While we set the
minimum corpus frequency to be 100, this number can be increased to
further improve the speed of the ranking process. Thus, in our example
in Fig. 1, ‘paraffin-embedded bladder cancer section’ did not occur
frequently enough and was filtered out in this initial stage.

After the initial filtering step, we rank the multi-word phrases to
identify meaningful phrases based on their likelihood to occur in
PubMed literature as coherent units. Although there are several
common phrase ranking criteria [6,17], we found they offered a poor
trade-off between phrase frequency, constituent word frequency, and
phrase length. Thus, we propose our own ranking criteria “Information
Frequency (Info_Freq)” that provides a good balance. As an example,
we filter out the phrase “cancer cells showed” in the filtering step of
Fig. 1 since it has a low rank according to our criteria. Below, we de-
scribe Info_Freq and four of the commonly used phrase ranking metrics
as well as discuss the benefits and limitations of each of them.

1. Raw Frequency: A measure of the number of times the phrase
appears in the entire corpus. With the removal of stop words, most
of the phrases that occur very frequently are likely to be good
phrases. However, the simple nature of this metric punishes mean-
ingful phrases that do not appear often and predominately favors 2-
word phrases. Phrases like ‘results suggest’ and ‘present study’
which occur in most documents are ranked high but other important
phrases like ‘epithelial tissue’ and ‘acute respiratory failure’ do not
occur as frequently and subsequently have a low rank.

2. Point-wise Mutual Information (PMI)[7]: A measure of how
much information is gained about a particular word if you also know
the value of a neighboring word. It is defined as:

=x y
p x y

p x p y
PMI( , ) log

( , )
( ) ( )

,

where p x( ) is the probability of the word x occurring in a document,
and p x y( , ) is the probability of the co-occurrence of both words x y,
occurring in the same document.
For a three-word phrase, we adapt the above formula as:

=x y z
p x y z

p x p y p z
PMI( , , ) log

( , , )
( ) ( ) ( )

,

PMI is often used to find good collocation pairs as high PMI occurs
when the probability of the co-occurrence is either higher or slightly1 https://www.nltk.org/.
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lower than the probabilities of the occurrence of each word.
Conversely, phrases that contain frequently occurring words will
have small PMI scores even if the phrase is good. As an example,
‘blood cells’ should be an important and meaningful phrase.
Unfortunately, the constituent words ‘blood’ and ‘cells’ occur fre-
quently in the corpus. As a result, the phrase is ranked very low.

3. Jaccard’s Coefficient (JC)[40]: A measure of the similarity and
diversity of the entire phrase set. It is defined as the frequency of a
phrase divided by the total number of phrases that contain at least
one term in the phrase:

=
+ ∗ + ∗

x y
x y

x y y x
JC( , )

freq( , )
freq( , ) freq( , ) freq( , )

,

where ∗xfreq( , ) denotes the frequency of any phrase that contains
the term x but not y. For a three-word phrase, we adapt JC as:

=
+ ∗ + ∗ + ∗

x y z
x y z

x y z x y z
JC( , , )

freq( , , )
freq( , , ) freq( , ) freq( , ) freq( , )

,

Although Jaccard index accounts for the diversity of the phrase,
longer phrases are punished as there is a higher likelihood of at least
one word appearing in a phrase. Thus, longer phrases like ‘reverse
transcription polymerase chain reaction’ and ‘cervical squamous cell
carcinoma’ will be ranked low even though they are meaningful
phrases.

4. Word2Phrase: This is a method proposed by [26]. It is a data-
driven approach where phrases are formed based on unigram and
bigram counts.

=
−x y x y σ

x y
Word2Phrase( , ) log count( , )

count( )count( )
.

σ is used as a discounting coefficient to prevent too many phrases
with infrequent words to be formed. This technique is applied in
multiple passes to find longer phrases. For example, the phrase
“blood cells” occurs 7000 times while “tagging snps” occurs only
350 times but the latter will have a higher score since the con-
stituent words “tagging” and “snps” are infrequent compared to the
more frequently occurring words “blood” and “cells” in the first
phrase. The discounting coefficient takes off a constant number so

that phrases with much less frequency but higher scores due to in-
frequent constituent words will be penalized more. We provide an
empirical example in the supplementary file.

5. Info_Freq: Our proposed measure of the association between words
in the phrase that accounts for the phrase frequency, the constituent
words frequency, and the length of the phrase. For a two word
phrase “x,y”, we calculate the info_freq as:

= ∗x y
p x y

p x p y
x yInfo_Freq( , ) log

( , )
( ) ( )

log(freq( , )).

For a three-word phrase, we adapt the above formula as:

= ∗x y z
p x y z

Info Freq x y p z
x y zInfo_Freq( , , ) log

( , , )
_ ( , ) ( )

log(freq( , , )).

In the above equation, we assume the two-word-phrase (x,y) occurs
more frequently than (y,z). Scores are calculated in increasing size
of phrase length. All two-word-phrase scores will be calculated be-
fore any three-word phrases and so on. For instance, to calculate the
info_freq of the phrase “high blood pressure”, we first calculate the
score for the shorter phrase “blood pressure” and use this to get the
score for the longer phrase. This is applied for phrases with more
than three words as well. For the four-word phrase “chronic ob-
structive pulmonary disease”, we calculate the score for “pulmonary
disease”, then for “obstructive pulmonary disease” and finally for
“chronic obstructive pulmonary disease”. In the attached supple-
mentary file, we provide detailed examples of how the scores are
calculated for longer phrases.

Table 1 shows the top 10 phrases from all 27 million PubMed ab-
stracts based on each of the five above criteria. Both the frequency and
JC metrics only contain 2-word phrases. Moreover, the top-ranked
phrases by frequency are not medically meaningful. PMI and Word2-
Phrase are also biased towards short phrases mostly consisting 2 words.
On the other hand, the top 10 phrases using Info_Freq contain a good
mix of long and short phrases that are biomedical-relevant terms. We
get 2-word, 3-word, 4-word and 5-word phrases using Info_Freq. Since
our goal is to minimize the number of phrases to embed while keeping
the most important ones, Info_Freq allows us to extract quality phrases

Fig. 1. An illustration of PMCVec’s workflow.
The text data is preprocessed and chunked to
obtain candidate phrases. The phrases are
ranked using our proposed Information
Frequency criteria, and then filtered. The re-
sulting phrases are tagged to form a single unit
and the tagged text is passed into a standard
word embedding model. Each term is then re-
presented using a dense vector that maintains
semantic similarity and relatedness.
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with different number of words.

2.4. Tag and build embeddings

The final step in our workflow is to tag the selected phrases as a
single term and then build the distributed word embeddings. The tag-
ging process reformats the original phrase by joining the constituent
words using the ‘_’ symbol. This is to ensure the phrase is considered a
single term (or unit) in the embedding process. For example, ‘pro-
liferating cell nuclear antigen’ is tagged as ‘pro-
liferating_cell_nuclear_antigen’ in the original corpus.

Once the tagging process is complete, we train a word embedding
model on the entire tagged corpus. Under the word embedding model,
terms are represented as dense vectors that capture the meaning of the
words and retain the semantic and syntactic relationship between
words. We use Word2Vec, the most widely used embedding method
[27], which trains a shallow neural network to learn the word vectors.
Word2Vec consists of two different architectures, the continuous bag of
words (CBOW) and Skipgram. In CBOW, each word is trained using its
surrounding context words – given this set of context words, what is the
word that is most likely to appear? For example, in Fig. 2a, using the
context of six words, what is the word that is most likely to appear
between them? On the other hand, Skipgram (Fig. 2b) trains the context
based on the target word – given the word, what are the other words
that are likely to appear? We assessed the impact of the two different
architectures (Fig. 2) on the quality of the resulting embeddings. We
used an existing work to guide the hyperparameter searches for CBOW
and Skipgram to achieve optimal performances on both architectures
[5]. While our framework can leverage other word embedding models
such as Glove [36] and FastText [3], we achieved the best performance
with the Word2Vec model.

We assessed our model on five different evaluation datasets and
performed several experiments to study the impact of the number of

phrases, embedding architecture, and phrase generation. We also
evaluated PMCVec with several other publicly available word embed-
dings.

2.5. Evaluation datasets

We evaluated the performance of the final models on five popular
medical term similarity and relatedness datasets.

• Mayo[34]: This dataset consists of a total of 101 UMLS concept
pairs (202 terms): 113 are unigrams, 73 are 2-grams, and 16 are 3-
gram or more. 13 medical coding experts rated these 101 pairs for
semantic relatedness on an ordinal scale. The relatedness of each
term pair was assessed based on a four-point scale: (4.0) practically
synonymous, (3.0) related, (2.0) marginally related and (1.0) un-
related.

• miniMayo: This is a subset of the ‘Mayo’ dataset and consists of 30
term pairs on which a higher inter-annotator agreement was
achieved. Out of a total of 60 term pairs, 31 are unigrams, 22 are 2-
grams and 7 are 3-gram or more.

• AH[16]: This is a set of 36 medical concepts extracted from the
MeSH repository by Hliaoutakis. The similarity between word pairs
was assessed by 8 medical experts. This dataset contains 41 unigram
terms, 20 2-gram terms, and 11 terms which are 3-gram or more.

• UMNSRS[32]: This is a dataset of 566 UMLS concept pairs that
have been ranked by eight medical residents for similarity on a
continuous scale. All the 1132 terms are unigrams.

• UMNSRS_R[32]: This is a dataset of 587 UMLS concept pairs that
have been ranked by eight medical residents for relatedness. All of
the 1174 terms are unigrams.

Two of the datasets (UMNSRS and UMNSRS_R) consist of only single-
word term pairs only. The other three (Mayo, miniMayo, and AH)

Table 1
The top 10 phrases from 27M PubMed abstracts using five different ranking criteria.

Frequency PMI JC Info_Freq Word2Phrase

present study gemtuzumab ozogamicin stainless steel polymerase chain reaction colorectal cancer
risk factor erector spinae myasthenia gravis magnetic resonance imaging waiting list

significant difference oculocutaneous albinism endoplasmic reticulum vascular endothelial growth factor virtual screening
cell line hpv dna testing anorexia nervosa chronic obstructive pulmonary disease tumor necrosis factor

results suggest enterobius vermicularis mycophenolate mofetil coronary artery bypass graft sodium nitroprusside
control group cerebrotendinous xanthomatosis rainbow trout receiver operating characteristic curve sensorineural hearing loss
amino acid labrador retrievers confidence interval body mass index pulmonary arterial hypertension

significantly high polymyalgia rheumatica neurofibrillary tangles reverse transcription polymerase chain reaction microscopic examination
significantly higher lymphomatoid papulosis lupus erythematosus left anterior descending coronary artery glucocorticoid receptor

risk factors planum temporale vena cava amino acid gastric bypass

Fig. 2. The two different Word2Vec architectures.
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contains both single and multi-word term pairs.

2.5.1. Evaluation metric
The comparison on the semantic similarity and relatedness datasets

is based on the Spearman rank order correlation coefficient (ρ). The
coefficient is computed by comparing the ranking from the model ( ̂ri ) to
the expert judged ranking (ri):

̂
= −

∑ −

−
ρ

r r
n n

1
6

( 1)
.i i i

2

Since the benchmark models only support single words, we use a
compositional approach of vector averaging wherever there are multi-
word similarity comparisons. For instance, when comparing the se-
mantic similarity of the two phrases “Kidney Failure” and “Renal
Failure”, our model represents both terms as single entities and learns a
vector representation for each phrase. The baseline models, however,
learn embeddings for each word in the phrase and average those vectors
to represent the phrase.

2.6. Impact of phrase generation

Our first experiment assesses the impact of our phrase generation
step. A qualitative comparison can be seen in Table 1, which contains
the top phrases generated by different phrase generation criteria. In this
section, we quantify the performance of the metrics on the evaluation
datasets. Table 2 shows the comparative scores based on similarity and
relatedness for each metric, with the word2vec hyperparameters se-
lected that achieved the highest score with 18,000 phrases used as this
gave the best performance across the board. The full table with ex-
haustive parameters is attached in the supplementary file for further
comparison. We see that Info_freq gets the best scores in the three
mixed datasets (both single and multi-word phrases) and performs si-
milarly in the single word datasets too. Moreover, Info_Freq is robust
across a wide range of hyperparameter settings for the embedding
models.

We also compared the quality of our phrases to PubMed Phrases, a
collection of common phrases that were generated for biomedical NLP
[20]. Each phrase comes with a precalculated score based on the p
value of the hypergeometric test the authors performed on segments of
consecutive terms that are likely to appear together in PubMed. To
compare the phrase generation method, we tagged the PubMed Phrases
in the PubMed abstracts and re-trained a new CBOW model. Longest
phrases are tagged first to avoid conflict with substring phrases. Any
substring phrases of longer phrases will be tagged only if they appear as
stand-alone not as sub-phrase of longer phrase. Fig. 3 shows the average
similarity scores using all five test datasets using the PubMed phrases
[20] and PMCVec. We include two models for PubMed Phrases, the first
is using the top n phrases as scored by the authors and the second (exist
in chunk) is also using the authors scores but only tagging phrases if the
phrase exists in our preprocessed chunks. The PMCVec-based models
consistently outperform the PubMed phrases at all the ranges of
phrases. This showcases the effectiveness of our phrase generation
technique.

2.7. Impact of number of phrases and embedding techniques

Our second experiment assesses the quality of the PMCVec-embed-
dings based on the number of tagged phrases and the two Word2Vec
architectures. Fig. 4a depicts how the number of phrases affects the
quality of the learned model with respect to the five test datasets
(CBOW model is used). For the two datasets (UMNSRS and UMNSRS_R)
with only single word pairs, the quality of the embedding mono-
tonically decreases as we include more phrases. As more phrases are
tagged, fewer unigrams are available to learn the word embeddings. For
the combined test sets (miniMayo, mayo and AH), the quality of the
embeddings increases and then decreases or stalls thereafter. Thus, for
optimal performance we need to cap the number of phrases so that our
model learns quality vectors both for single and multi-word terms.

We also assessed the quality of the word vectors using the two
different Word2Vec architectures. Fig. 4b shows the average similarity
scores on all five datasets for both the CBOW and Skipgram archi-
tecture. CBOW is better when there are fewer phrases. As the number of
phrases increases, the Skipgram model slightly outperforms CBOW.
Based on the figure, the best performance is achieved by CBOW using
18 K tagged phrases. The hyperparameters associated with this model
are a negative sample size of 10, sub-sampling of 1e−5, a minimum
count of 1, vector dimension of 200, context window size of 10, and a
learning rate of 0.025.

3. Results

3.1. Baseline methods comparison

We benchmarked PMCVec with four other word-embedding models,
all pre-trained on different corpora. For our model, we used hy-
perparameters associated with the best performance as described
above.

• Google news[15]: A Word2Vec model that is trained on a general
non-biomedical corpus. This is widely used as state-of-the-art em-
bedding model as it is trained on part of Google News dataset (about
100 billion words). The model contains 300-dimensional vectors for
3 million terms.

• Glove[14]: A GloVE model that is trained on a general non-bio-
medical corpus. Training is performed on aggregated global word-
word co-occurrence statistics from a corpus of Wikipedia and
Gigaword 5 (6 Billion tokens). It is a 300-dimensional vector re-
presentation for 400k words.

• BioNLP[30]: A Word2Vec model that is trained on 22,723,473
PubMed abstracts and titles as well as the full-text in 672,589
PubMed Central Open-Access articles. It is a 200-dimensional vector
representation for over 3 million words.

• BioASQ[2]: A Word2Vec model that is trained on a corpus of
10,876,004 English abstracts of biomedical articles from PubMed.
The resulting model is 200-dimensional vector representation of

Table 2
Top similarity scores for each phrase selection metric.

Metric AH miniMayo Mayo UMNSRS UMNSRS_R

JC 0.59 0.78 0.61 0.6 0.54
pmi 0.62 0.81 0.6 0.62 0.55

Word2Phrase 0.63 0.79 0.55 0.6 0.55
Info_Freq 0.7 0.81 0.66 0.59 0.55

The best scores for each evaluation dataset are shown in bold.

Fig. 3. Comparison with PubMed Phrases.
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1,701,632 distinct words.

The performance of PMCVec and the baseline models on the five
datasets is shown in Fig. 5. The two models trained on general corpora
(Google news and Glove) have the lowest scores on all the datasets. On
the contrary, the other two baseline models trained on biomedical
corpora perform significantly better. This is consistent with prior results
outlining the importance of the training corpus [31]. PMCVec outper-
forms the baseline models on all the datasets. The improvement is no-
ticeable in the Mayo dataset, where the task is harder due to the lower
inter-annotator agreement. We also note that our model performs better
on both of the single-word pair datasets (UMNRS and UMNRS_R),
which shows that incorporating phrases into the embedding process
does not significantly compromise the quality of the single word vec-
tors.

To quantify the performance of PMCVec on the single words and
multi-words separately, we extract unigrams from the “AH” and
“Mayo” datasets. Since “MiniMayo” is a subset of the “Mayo” dataset,
all terms are already included in the extracted set. The remaining two
datasets (UMNSRS and UMNSRS_R) are all single words and the per-
formance of the models on these datasets are shown in Fig. 5. We depict
how all the aforementioned models compare when using only unigrams
and multi-word phrases in Fig. 6. We observe that the performance gain

from PMCVec is noticeable for both single words and multi-words
compared to the baseline methods.

The inclusion of multi-word phrases not only improves the semantic
similarity performance but is also qualitatively better. Fig. 7 shows the
cluster of terms that are semantically similar to the word ‘hypertension’.
In the two scenarios where no phrases are tagged (Fig. 7a) and the
PubMed phrases are tagged (Fig. 7b), the closest terms to hypertension

Fig. 4. The similarity score as a function of the number of tagged phrases and the Word2Vec model architectures.

Fig. 5. Comparison of the baseline methods and PMCVec on the five datasets.

Fig. 6. Comparison of the baseline methods and PMCVec on unigrams and
multigrams extracted from the test datasets.

Z. Gero and J. Ho Journal of Biomedical Informatics: X 3 (2019) 100047

6



are the same which are ‘hypertensive’ and ‘hypertensions’ and the third
closest are ‘hypertensives’ and ‘prehypertensive’ respectively. More-
over, only two multi-word phrases (‘arterial hypertension associated’
and ‘uncomplicated essential renovascular’) appear when using the
PubMed phrases. Using PMCVec, ‘high blood pressure’, ‘elevated blood
pressure’, and ‘essential hypertension’ are the closest and all three are
semantically similar to hypertension.

Additional examples of similar terms are shown in Table 3 for dif-
ferent disorders, symptoms, and medications. In all 6 cases, PMCVec is
able to return relevant multi-word synonyms in the top 5 closest words.
’diabetes mellitus’ is a semantically similar to ’diabetes’ whereas the
other two methods contain the top word ‘mellitus’. Similarly for
symptoms, ‘joint pains’ is returned for aches whereas the other two
embeddings do not have this term. The same holds true for drugs; for
‘aspirin’, single words returns ‘clopidogrel’ and PubMed phrases gets

‘dipyridamoleasprin’ as the most sematically similar term. These are
drugs commonly administered with aspirin. With PMCVec, the top term
is ‘acetylsalicylic acid’ which is another name for aspirin. In general, the
PMCVec-based embeddings produce more accurate vector representa-
tions for phrases. Biomedical text is rich with multi-word concepts and
terminologies, and as such representing these terms appropriately as
single units to learn their vector representations is an important step in
biomedical text processing.

3.2. Limitations

Our model focused on obtaining a good distributed term re-
presentation by combining multi-word phrases and single-words.
Unfortunately, training GloVe and FastText models took considerably
more time to train in large dimensions. Due to computational time and

Fig. 7. Word cloud for semantically similar terms to ‘hypertension’. The size of the term is proportional to how semantically close it is to the word ‘hypertension’ with
the largest denoting the most similar.

Table 3
Qualitative results with and without phrases in embeddings.

Single words PubMed phrases PMCVec

disorders diabetes mellitus mellitus diabetes_mellitus
prediabetes niddm tdm
diabetic diabetic diabetes_patients
tdm tdm mellitus
prediabetic prediabetes prediabetes
arrhythmias arrhythmias supraventricular_arrhythmia

arrythmia tachyarrhythmias tachyarrhythmias arrhythmia
tachyarrhythmia tachyarrhythmia tachydysrhythmias
tachycardia tachycardiafibrillation supraventricular_tachyarrhythmia
arrhythmic tachycardia cardiac_arrhythmias

croupy tussive coughing
symptoms cough coughing persistent_cough chronic_cough

tussigenic coughs expectoration
coughers tussigenic rhonchi
coughs sneez tussigenic
ratbungarus pains aching

aches bungarusrat aching joint_pains
pains thightness pains
backache ratbungarus jointbody
acetylcholinesterases bungarusrat lassitude

clopidogrel dipyridamoleaspirin acetylsalicylic_acid
drugs asprin aspirins platet indobufen

antiplatelet esomeprazoles clopidogrel
acetylsalicylic heparinwarfarin aspirins
aspirindipyridamole giibiiia antiplatelet_drugs
amoxycillin amoxycillin amoxycillin

amoxicillin phenoxymethylpenicillin amoxicillinclavulanate amoxicillinclavulanic_acid
amoxicillinclavulanate augmentin amoxicillinclavulanate
cefaclor cefaclor phenoxymethylpenicillin
augmentin phenoxymethylpenicillin augmentin
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memory limitations, we were not able to train these models with large
dimensions and window sizes. The GloVe and FastText models we
trained performed much worse than the other two Word2Vec models in
smaller dimensions (100-dimension and 200-dimension results are in
the supplementary table) which is consistent with the work of Fan et al.
[11] on clinical notes.

The method we used for phrase generation did not consider terms
and phrases containing only digits or stop words. Even though it is
common to remove stop words in the form of subsampling for word
embedding generation since they occur much more frequently and in-
flate the vocabulary size and training time [26], it may not be desired
for biomedical phrase generation. We believe that this may result in the
exclusion of meaningful phrases. However, incorporating these aspects
into the phrase generation process would significantly lengthen the
computation time. We plan to experiment in the future to determine the
viability of including phrases with digits and stop words.

4. Conclusion

Learning quality vector embeddings that incorporate both single
word and multi-word phrases can be quite challenging. Although
compositional approaches to combine unigram vectors to obtain a
phrase representation has worked well in some domains, this does not
capture the meaning of key biomedical concepts. Moreover, in-
corporating all the existing identified biomedical phrase can negatively
impact the quality of the embeddings. To address these issues, we in-
troduced PMCVec, an unsupervised method that bridges the gap in
learning quality vector embeddings for multi-word phrases which are a
staple in biomedical literature. Our method not only generates useful
phrases from the corpus, but it also introduces a new criterion to rank
the generated phrases to avoid incorporating all the phrases and
achieve a better embedding for both single words and multi-word
phrases. We showed that the learned phrase embeddings result in better
performance than compositional approaches using several benchmark
datasets. As an example, a search result for the term ‘colitis’ should
include multi-word expressions like ‘inflammatory bowel disease’. The
learning of vectors for both these terms allows easy association of the
concepts, which are very similar terms but will not be learned as such
with just single-word embeddings. We believe that PMCVec-learned
representations will be widely useful for a variety of biomedical NLP
tasks.

Data availability

The PubMed dataset used in this study is publicly available for
download at https://www.nlm.nih.gov/databases/download/pubmed_
medline.html. The resources we used and the final model are available
for download at https://github.com/ZelalemGero/PMCvec.
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