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ABSTRACT
A vast amount of biomedical literature is generated and digitized
every year. As a result is a growing need to develop methods for
discovering, accessing, and sharing knowledge from medical lit-
erature. Keyphrase extraction is the task of summarizing a text
by identifying the key concepts. The keyphrases can be single-
word or multi-word linguistic units which can concisely represent
a document. Although a variety of models have been proposed for
automated keyphrase extraction, the performance is poor in com-
parison with other natural language processing tasks. The problem
is even more daunting for biomedical domain where the text is
filled with highly domain-specific terminologies. We propose a new
method, NamedKeys, to automatically identify meaningful and in-
formative keyphrases from biomedical text. NamedKeys integrates
named entity recognition, phrase embedding, phrase quality scor-
ing, ranking, and clustering to extract author-assigned keywords
from biomedical documents. Performance evaluation on PubMed ab-
stracts demonstrates that NamedKeys achieves significant improve-
ments over existing state-of-the-art keyphrase extraction models.
Furthermore, we propose the first benchmark dataset for keyphrase
extraction from biomedical text.
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1 INTRODUCTION
There has been an exponential growth in biomedical literature with
over 28 million articles indexed by PubMed 1. Thus, information
extraction is a key component in automated text processing as it
facilitates the acquisition of structured information. Keyphrase ex-
traction, the identification of single-world or multi-word linguistic
units that concisely represent a document, is a crucial aspect of in-
formation extraction. Keyphrases help readers rapidly understand,
organize, access, and share information of a document by providing
a short summary of the document. Extracting keyphrases from doc-
uments is of paramount importance for natural language processing
(NLP) tasks such as text summarization [2, 37], text classification
[11], topic detection [22, 44], recommendation systems[30, 38], ci-
tation summarization [34] and information visualization [9]. Sci-
entific publishers use keyphrases to identify potential reviewers
for submitted articles, recommend articles to readers, and suggest
missing citations to authors [1].

A variety of models have been introduced for keyphrase ex-
traction due to its widespread use [18]. Existing keyphrase extrac-
tion systems are either supervised or unsupervised. Supervised
methods train classifiers on labeled examples and require large
domain-specific annotations. Unfortunately, such labeled data is
typically unavailable in the biomedical domain as the annotation
process is labor intensive and usually necessitates significant do-
main expertise. Unsupervised methods, on the other hand, rely on
word co-occurrence statistics from large external corpora such as
Wikipedia and WordNet. Large external corpora are good statistical
approximations for general domain keyphrase extraction but lack
good representation in domain specific settings like biomedical text
where the vocabulary can be significantly different. Moreover, many
of the unsupervised approaches focus on word level co-occurrence
and prefer keyphrases containing highly ranked words. These bi-
ases results towards keyphrases withmore number of words. Recent
unsupervised approaches such as graph-based methods and topic-
basedmethods offer better keyphrase generation yet can suffer from
a lack of diversity of the extracted keyphrases or generate phrases
that may not be meaningful. Despite these efforts, the task remains
challenging and the performance of current systems remains poor
in comparison to other NLP tasks [24].

The challenge of keyphrase extraction is even more daunting
in the biomedical domain where the text contains highly domain-
specific terminologies. Given the vast amount of biomedical liter-
ature generated and digitized every year, there is a growing need
to develop methods for discovering, accessing, and sharing knowl-
edge from medical literature [35]. Significant portions of research
articles published in medical journals do not have author-assigned

1 https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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keyphrases. Even when they come with keyphrases, the number of
author-assigned keyphrases available with the articles is too lim-
ited to represent the topical content of the articles. This makes an
automatic keyphrase extraction process highly desirable. Despite
this need, keyphrase extraction for biomedical text has been largely
ignored by the research community. Only two works [23, 36] have
been introduced and either have been demonstrated on a small set
of documents or necessitated a hand-curated list of keyphrases.

A similar line of work related to keyphrase extraction is the
use of Medical Subject Headings (MeSH) by a prominent medical
literature database, MEDLINE. MeSH is a controlled set of terms
manually assigned by human indexers in the National Library of
Medicine. Even though MeSH terms make it easier to search for a
document and cluster similar documents, generating MeSH terms
for every document is expensive and time-consuming; new articles
are not immediately indexed until 2 or 3 months later and approxi-
mately ten dollars per article is spent for the manual indexing [28].
Moreover, MeSH terms are ‘controlled language’ meaning users
searching for a document need to use the exact terminology (or a
term in the MeSH vocabulary) which are not easy for end users to
define compared to more natural languages of author keywords
which are not bound by any vocabulary. Neveol et al. [32] found that
about 75% of keywords authors considered as important to describe
the content of their own articles could not be matched to MeSH
terms. Hence, there is a need to develop an automated keyphrase
generation system that can extract author-assigned keywords from
biomedical documents.

To address the challenges of keyphrase generation from biomed-
ical literature, we propose NamedKeys, a novel method to produce
meaningful and informative keyphrases to summarize biomedical
text. Our method uses biomedical-specific Named Entity Recog-
nition (NER) to identify words and phrases that are important in
the text which are mostly named entities(NE). We also introduce a
data-driven phrase-based embedding process to extract the most
descriptive phrases from a given text. We propose a new phrase
scoring criteria to identify meaningful phrases. Finally, we employ
a ranking and clustering approach to identify diverse keyphrases
that best reflect the document. Our experimental results on 3049
PubMed abstracts illustrate the power of NamedKeys.

Our approach attains better precision and recall scores compared
to other state-of-the-art keyphrase generation algorithms, including
up to a 35% F1 score improvement over the next best model. We
summarize our major contributions in this work.

• Improved generation of candidate keyphrases: Since
the quality of selected top keyphrases is dependent on the
candidate keyphrases generated, we employ NER and a new
phrase generation mechanism to identify possible candidate
keyphrases.

• Better document and keyphrase representation: While
word embedding methods are popular representations for
text, biomedical literature containsmanymulti-word phrases
which may not be reflected in compositions of single word
vectors. We propose a data-driven mechanism for identifying
common phrases in a large corpus and learn joint single
word and multi-word representations that better capture the
semanticmeaning of the phrases. Documents are represented

as inverse document frequency (IDF) weighted averages of
the learned word and phrases vectors.

• New score to measure phrase quality: We propose a new
metric to measure the quality of a multi-word phrase. Our
metric accounts for the frequency of the phrase itself and
the frequency of the constituent words.

• Diverse and representative extracted keyphrases: We
propose to rank the candidate keyphrases based on the se-
mantic similarity using our phrase embeddings and the new
phrase quality score. The selection of top keyphrases is diver-
sified using clustering and preventing semantically similar
terms from being selected.

• Creation of a new benchmark dataset: In the general
domain, there are several publicly available datasets for
keyphrases extraction. Unfortunately, no such dataset ex-
ists for biomedical literature. We created the first bench-
mark from PubMed Central Open Access articles and author-
submitted keyphrases for reproducibility and to inspire fu-
ture research.

The next section presents a brief description of the previous
works related to the work presented in this paper. The proposed
keyphrase extraction method has been discussed in section 3. Sec-
tion 4 and 5 present experimental results and conclusion respec-
tively.

2 RELATEDWORK
Keyphrases extraction methods can be categorized into unsuper-
vised and supervised approaches [18]. Supervised approaches re-
quire training data that contain a collection of documents with their
labeled keyphrases. Many of such approaches pose the problem of
keyphrase extraction as a binary classification problem [40, 41, 45].
These methods use various learning algorithms to train a classi-
fier on datasets annotated with positive and negative keyphrases.
Support vector machines [20, 26], multi-layer perceptron [21] and
maximum entropy [21, 46] are a few of the commonly used learning
algorithms. Others pose the problem as a ranking problem where
the ranker learns to rank between two candidate keyphrases [20].
These supervised approaches use different statistical and struc-
tural features from within the document and outside resources to
build their models. Term frequency-inverse document frequency,
the number of times a phrase occurs in a document, where the
phrase first occurs in a document, the number of words preceding
the phrases first occurrence and the part-of-speech of word(s) in a
phrase are commonly used features [18].

Unsupervised approaches do not require labeled data and hence
are preferred for domains with limited training data. The first com-
mon unsupervised approach is graph-based methods. These meth-
ods build a graph from the input document and rank its nodes per
their importance using a graph-based ranking method. All the can-
didate keyphrases will be vertices and the connection between each
candidate is represented by edges. Based on the relatedness between
the candidates, the weights in each vertex is determined. Different
relatedness measures are employed to measure the relationship
between candidates. TextRank [29], a prototypical graph-based al-
gorithm, starts by assigning arbitrary values to each node in the
graph, and iterates until convergence below a given threshold is
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achieved. After running the algorithm, a score is associated with
each vertex, which represents the importance of the vertex within
the graph. Vertices with more connections and connections from
other important nodes are ranked higher.

The second common unsupervised approach is topic-based meth-
ods. Such approaches cluster candidate keyphrases into topics in
the document so that all the topics in the input document are rep-
resented by the selected keyphrases. This helps to assure all topics
in the input document are represented in the final keyphrases and
the selected keyphrases are relevant to one or more topic(s) in
the document. [25] clusters semantically similar candidates using
Wikipedia and co-occurrence-based statistics and selects candidates
close to the centroid of each cluster. The assumption is that each
cluster will cover a topic from the input document and choosing
candidates from each topic ensures exhaustively representing all
topics. [24] modifies [25] to weigh each candidate based on the
probability of the topics it belongs to ensure more important topics
get more weight and hence more number of selected keyphrases.

Yet another unsupervised approach focuses on statistical features
that do not require external dictionaries or corpora. Methods which
use this approach rely on features extracted from the documents in
the current corpus such as the position of the first occurrence of a
candidate, word frequency, casing, and how often a candidate word
appears in different sentences [8, 12]. Recently, due to the popularity
of word embedding methods, keyphrase extraction methods are
using document semantic similarity measured in word vector cosine
similarity to weigh the relatedness between candidates [27, 43].

Keyphrase extraction in biomedical domain has been experi-
mented by few researchers. In [23], Li et al. extract noun phrases
from medical literature as keyphrase candidates and assign weights
to extracted noun phrases for a medical document based on how
important they are to that document and how domain-specific they
are in the medical domain using WordNet lexical database and Spe-
cialist Lexicon. Even though this work is a pioneer in the extraction
of keyphrases from medical documents, the use of a very small test
set of 60 documents is not large enough for conclusive results. In
[36], Sarkar presents a hybrid approach to keyphrase extraction
from medical documents. The approach is an amalgamation of two
methods: the first one assigns weights to candidate keyphrases
based on combination of features such as position, term frequency,
inverse document frequency and the second one assign weights to
candidate keyphrases using some knowledge about their similari-
ties to the structure and characteristics of keyphrases available in
the memory (stored list of keyphrases). This approach necessitates
the availability of hand-curated keyphrases in memory to learn
from making it harder to use in an unsupervised setting.

3 METHODOLOGY
Extracting keyphrases from text can be considered as selecting
phrases that capture the gist of the document and are also seman-
tically and syntactically correct. In [39] these two measures are
referred to as informativeness and phraseness. Informativeness
measures how good a phrase is in capturing the main theme of
the document while phraseness measures the likelihood of a se-
quence of words to be a meaningful phrase. We propose NamedKeys

– a new keyphrase extraction algorithm, that produces informa-
tive and meaningful keyphrases for biomedical text. Our model,
illustrated in Figure 1, consists of the following steps: (1) new can-
didate keyphrase generation mechanisms to construct an extensive
keyphrase candidate set; (2) a new phrase-embedding represen-
tation for the document and the phrases to better measure the
informativeness of a given phrase; (3) a new “phraseness" metric
to assign a normalized score for every phrase generated from the
corpus; and (4) a ranking and clustering module that ranks the
candidate phrases and clusters the keyphrases to ensure that the
extracted keyphrases are diverse. The details for each of the four
steps are discussed in the following subsections.

3.1 Candidate Keyphrase Generation
We propose two new mechanisms for generating keyphrase can-
didates. The first process uses named entity recognition (NER) to
extract information such as disease names, medication, symptoms,
and chemicals. Instead of constructing multi-word phrases based on
important consecutively occurring words, we start with phrases as a
single unit of representation. We observed that many keyphrases in
biomedical literature capture concepts such as chemicals, diseases,
cell types, proteins, and gene named entities. Biomedical-specific
NER has been shown to help identify, problems and symptoms a
patient has exhibited, tests that have been run, and treatments that
have been administered [3]. Biomedical named entities are impor-
tant concepts that improve our understanding of medical text and
our ability to analyze them; identifying, for example, problems and
symptoms a patient has exhibited, tests that have been run, and
treatments that have been administered [3]. Unfortunately, biomed-
ical named entities may not occur frequently enough in the text,
and thus are often not suggested by existing keyphrase extraction
tools. Thus, we used SciSpacy [31], a specialized NLP library for
processing biomedical texts, to detect all the named entities in the
text. SciSpacy contains different modules for chemicals and disease
named entities; cell types; proteins and gene named entities; and
cell lines, DNA, RNA and cancer named entities.

The second mechanism finds phrases that are not named enti-
ties but are still potentially meaningful. Rather than rely only on
the NER, we propose a generic approach to extract more candi-
date phrases. NamedKeys chunks the text by identifying potential
keyphrase boundaries using stopwords and punctuation [36]. From
the generated chunks, those which belong to the following parts of
speech will be retained: ’JJ’, ’JJR’, ’JJS’, ’NN’, ’NNS’, ’NNP’, ’NNPS’.
We perform the parts of speech selection using Genia Tagger2;
a biomedical tool for text processing. Although stop words and
punctuations will never occur in any proposed keyphrase, it pro-
vides a systematic methodology for generating variable n-graph
keyphrases. The detected named entities from the NER process and
from this chunking process are combined to construct the candidate
keyphrase pool.

Figure 2 illustrates a comparison of NamedKeys against base-
line keyphrase generation models. The baseline algorithms used
for comparative analysis are detailed in Section 4.3. Our method
extracts six of the seven named entities correctly as keyphrases
while the other models extract a fewer number of keyphrases.

2http://www.nactem.ac.uk/GENIA/tagger/
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Figure 1: An illustration of ourworkflow. The abstract is preprocessed to extract NamedEntities (NEs) and nounphrase chunks.
Inverse document frequency (idf) scores are calculated for each NE and this will be used to calculate the document embedding
by performing idf-weighted vector averaging of the NEs. NEs and the noun phrases will be candidate keyphrases and their
similarity to the document embedding and phrase quality will be calculated. The two scores will be used to build the PageRank
algorithm. Finally, we cluster the candidates based on their semantic similarity to each other and top candidates from each
cluster will be returned.

3.2 Phrase Embedding
The next step of NamedKeys focuses on identifying the candidate
keyphrases with high informativeness measures. We propose the
use of word embeddings to help rank the candidate phrases based
on closeness to the document. Word embeddings are dense-low di-
mensional vector representations of words such that related words
are close in vector space. Each dimension in the vector represents
a feature of a word, and the vector can, in theory, capture both
semantic and syntactic features of the word. Word2Vec [17], Glove
[16], and FastText [4] are commonly used approaches to train word
vectors. Unfortunately, many of the common word embedding ap-
proaches and pre-trained vectors focus on unigrams, while key
concepts in biomedical literature are often expressed as multi-word
phrases [33].

In this work, we develop a phrase-based embedding model to cap-
ture the semantic and syntactic relation between terms (or n-grams).
We use a data-driven approach of extracting a commonly occur-
ring sequence of words and learn embeddings for the extracted

phrases along with the single words. [16] showed that the presence
of unigram words intermixed with multi-word phrases improves
the performance of embedding models. To avoid pre-specification
of the number of words for a phrase, we used a similar idea as the
second mechanism in the keyphrase candidate generation step. We
identify potential phrase boundaries using stopwords and punctua-
tions (excluding the hyphen). A sequence of words that occur more
than a pre-defined threshold (100 is used for our experiments) are
considered potential phrases. Phrases are merged into a single word
(e.g., prostate cancer becomes prostate_cancer) in the order they
originally appeared in the text. The multi-word phrases are trained
with all the single words in the corpus. We use theWord2Vec tool to
train our phrase embedding model on over 27 million PubMed ab-
stracts which took 5hrs 34 minutes on a Macbook Pro machine with
Intel Dual Core i7@2.2Ghz CPU and 16GB RAM. Thus, our embed-
dings can capture the semantic relation between related concepts
like “Hypertension" and “High Blood Pressure".

Once the vector representations are available for all the terms
in a document as well as the candidate keyphrases, NamedKeys
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Figure 2: Named entities correctly extracted as keyphrases
by various methods

measures the informativeness of the candidates compared to the
candidate vectors of the document. Given the importance of the
named entities in the biomedical documents, we represent the doc-
ument, D using the IDF-weighted sum of the named entities:

D =

∑n
i=1 IDFi ∗wi∑n

i=1 IDFi
,

wherewi is the corresponding vector representation of the named
entity and IDFi is the inverse document frequency of the named
entity. IDF of a given named entity is calculated as the inverse of
the number of documents the term appears in. This is used for
attenuating the effect of terms that occur too often in the collection
to be meaningful for relevance determination. Then to calculate the
informativeness of a given candidate phrase, we compute the cosine
similarity between the document and the keyphrase representation,
wk :

Similarity =
DTwk

| |D | | | |wk | |
(1)

3.3 Phrase Quality
A candidate keyphrase can have a high cosine similarity to the
document and can still not be a syntactically meaningful phrase. As
an example, ‘ventricular arrhythmias vary” could have a high co-
sine similarity to a document discussing “ventricular arrhythmias”
but should not be ranked high since the phrase is not syntactically
sound. A better phrase would be just “ventricular arrhythmias“. Al-
though there are several common phrase ranking criteria [10, 19],
we found they offered a poor trade-off between phrase frequency,
constituent word frequency, and phrase length. For example, point-
wise mutual information (PMI) is often used to find good collocation
pairs as it calculates the probability of co-occurrence relative to the
probabilities of the occurrence of each word. Conversely, phrases
that contain frequently occurring words will have small PMI scores

Figure 3: The “phraseness" score of extracted keyphrases by
NamedKeys and baselines. The phrases in red are from NER
while the others are from chunking.

even if the phrase is good. To measure the phraseness of a candi-
date keyphrase, we propose “Information Frequency (Info_Freq)”,
a new ranking metric based on the phrase frequency and con-
stituent words frequency in the corpus [15]. This criteria achieves
the state-of-the-art performance when the resulting distributed
word representations are evaluated on five benchmark datasets for
biomedical semantic similarity. Our metric adds a multiplier to the
PMI index that captures the overall frequency of the phrase:

Info_Freq(x ,y) = log
p(x ,y)

p(x)p(y)
∗ log(freq(x ,y)) (2)

where p(x ,y) is the probability of the two words occurring together,
p(x) is the probability of the first word in the text and p(y) is the
probability of the second word in the text. Thus, Info_Freq measures
the phraseness of a sequence of words by considering how often
the phrase and the constituent words occur. Info_Freq is calculated
for all the candidate keyphrases and the scores are normalized to
lie between 0 and 1.

Figure 3 provides an illustrative example of a PubMed abstract
with the Info_Freq scores for phrases generated by NamedKeys and
common baselines. The baseline algorithms used for comparative
analysis are detailed in Section 4.3. From the figure, we can observe
that semantically meaningful phrases have high scores and are
highly likely to be assigned as keyphrases by the authors. On the
other hand, most of the phrases on the bottom right of the figure
are not semantically meaningful with low phrase quality scores and
hence are not considered appropriate keyphrases by the authors.
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3.4 Candidate Clustering and Ranking
The final two steps of NamedKeys are to rank the candidates using
the informativeness and meaningfulness measures, as well as clus-
ter the candidate keyphrases to avoid redundancy of keyphrases.
While phrase embedding and phrase quality capture the general
informativeness and meaningfulness of a given candidate phrase re-
spectively, we use local co-occurrence of two candidates to capture
the local relationship between the phrases within the context of the
given document using a weighted PageRank algorithm [18]. The
document is represented as a weighted undirected graph, where
vertices correspond to the words/phrases and the edges represent
the co-occurrence relations between two terms. Two vertices are
connected if they occur in the same sentences. For a graph with V
vertices and E edges, the score for vertex vi is calculated as:

S(vi ) = (1 − d)Wi + d
∑

j⊆in(vi )

sim(vi ,vj )

|out(vj )|
S(vj ), (3)

whereWi is the importance weight of vertex i measured as the
average of its similarity to the document vector and its phrase
quality, sim is the cosine similarity between keyphrases vi ,vj and
out is the number of outgoing edges of keyphrase vj , and d is a
damping factor. Thus, high scores reflect phrases that capture the
gist of the document and are also semantically and syntactically
correct.

Unfortunately, two common problems with keyphrase extrac-
tion algorithms are overgeneration and redundancy of keyphrases.
Overgeneration errors occur when a system correctly predicts a
candidate as a keyphrase because it contains a word that appears
frequently in the associated document, but at the same time er-
roneously outputs other candidates as keyphrases because they
contain the same word. Redundancy errors occur when a system
correctly identifies a candidate as a keyphrase, but at the same
time outputs a semantically equivalent candidate (e.g., it’s alias)
as a keyphrase. A recent study performed error analysis on the
various algorithms and showed that 52-64% of the errors were due
to overgeneration and redundancy of keyphrases [18]. For exist-
ing algorithms that rely on frequency, it can be difficult to avoid
overgeneration errors as rejecting a non-keyphrase containing a
word with a high term frequency might negatively impact the preci-
sion of the algorithm. On the other hand, redundancy errors occur
due to the inability to detect that two candidates are semantically
equivalent.

To overcome the overgeneration and redundancy error, we pro-
pose clustering the candidate keyphrases based on their semantic
similarity. The cluster analysis achieves two purposes: identify
keyphrases that are semantically similar and diversify the gener-
ated document keyphrases. The clustering algorithm uses the cosine
similarity scores for all pairs of the candidate keyphrases to identify
keyphrases that are similar. The importance of the cluster is then
calculated based on the average distance of each of its candidates to
the document. The cluster importance weights are then normalized
to sum up to 1, and are used to determine the composition of the
extracted keyphrases. For example, a cluster with a weight of 0.5
will provide approximately 50% of the final generated keyphrases,
while a cluster with 0.1 weight will contribute 10%. To further avoid
redundancy, keyphrases will not be selected if they are too similar

(e.g., sim(vi ,vj ) ≥ α where α = 0.75 in our experiments). While
any clustering algorithm based on distances can be used, we used
the Affinity Propagation clustering algorithm[14] with a damping
factor of 0.85 and Euclidean affinity. One benefit for Affinity Propa-
gation is that the number of clusters is automatically learned from
the data.

Figure 4 provides an example text with the clustered candidates.
We can observe that each cluster focuses on a particular topic, which
aids in diversifying the final selected keyphrases instead of taking
the top-ranked candidates only. Moreover, we can see the potential
benefit of not selecting keyphrases that are too similar from cluster 1.
A keyphrase algorithm that selects both “photosensitizer methylene
blue” and “photosensitizer methylene” as important keyphrases will
suffer from overgeneration error. By introducing the threshold (α )
to avoid selecting too similar phrases, we can reduce the possibility
of overgeneration errors.

4 EXPERIMENTS
4.1 Dataset
To the best of our knowledge, keyphrase extraction for biomedical
text has not been studied except for the two works mentioned in
the related works. As a result, there is no benchmark dataset for
this problem. We created the first dataset using the PubMed Cen-
tral Open Access Subset articles. This dataset was constructed by
selecting all the abstracts which contain at least 5 author-provided
keyphrases. Five is chosen as the minimum number of keyphrases
since most evaluation benchmarks are done at a minimum of five
keyphrase extraction. Since the focus of this work is keyphrase
extraction, we propose that the author-provided keyphrases serve
as appropriate summarizations of their articles. Thus, we did not
consider abstracts where there are no author-provided keyphrases
or abstracts where one or more keyphrases are not in the abstracts.

While the PubMed Central Open Access Subset contains over 27
million articles at the time of download, only 3049 articles had a
title, abstract, and at least five author-provided keyphrases found
in the abstract. A value of 0.85 is used for the damping factor d as
this gave the best score on a separate training set of 2000 abstracts.
This training set is different from this benchmark test set as we
used abstracts with less than five author provided keyphrases.

In addition to creating the first dataset, we have made it publicly
available 3. We hope that by releasing our dataset, we can facilitate
reproducibility and foster a new community to solve this important
problem. In our benchmark dataset, we provide the following fields
for each article:

• title: the title of the article,
• abstractText:the abstract of the article,
• keyphrases: a list of keyphrases provided by the authors

4.2 Evaluation Metric
The keyphrase extraction algorithms are evaluated using exact
match. In other words, the extracted keyphrase must have the
same exact word or words. All the algorithms are evaluated using
precision, recall, and F1 which are standard evaluation metrics for

3www.github.com/zelalemgero/namedkeys/testset
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Figure 4: The impact of clustering candidate keyphrases based on their semantic similarity to each other.

keyphrase generation [5]. The three measures are defined as:

Precision =
the number of correctly matched

total number of extracted
=

TP

TP + FP
(4)

Recall =
the number of correctly matched
total number of ground truth

=
TP

TP +TN
(5)

F1 = 2 ∗
Precision ∗ Recall

Precision + Recall
(6)

4.3 Baseline Methods
We compare NamedKeys with the state-of-the-art keyphrase ex-
traction approaches implemented by Boudin et al. [5]. Graph-based
approaches commonly use PageRank algorithm to determine the
importance of candidates by using incoming and outgoing vertices
to/from each candidate. Candidates with connections to other im-
portant candidates will have higher rank while candidates with
fewer connections or connections to less important vertices will
be ranked lower. Statistical-based approaches rely on features ex-
tracted from the document such as the position of first occurrence
of a candidate, word frequency, casing, and how often a candidate
word appears in different sentences. These approaches commonly
use external corpus likeWikipedia to construct the features and per-
form well in a general domain while graph-based methods have the
benefit of performing well in any domain since they do not depend
on specific corpus features. We could not find the implementations
of two baselines [27, 43] reported performing well in the general
domain. The results we got by implementing the algorithms were
worse than the other baselines used here. Hence, we did not report
the scores from those baselines. For the graph-based approaches
the following are used as baselines:

• MultiPartiteRank [6]: An approach that encodes the top-
ical information within a multipartite graph structure and
exploits their mutually reinforcing relationship to improve
candidate ranking.

• PositionRank[13]: An algorithm that incorporates infor-
mation from all positions of a word’s occurrences into a
biased PageRank algorithm.

• SingleRank[42]: A method that encodes the mutual influ-
ences of multiple documents within a cluster context.

• TextRank[29]: A model that accounts for the local context
of a text unit (vertex) and the information recursively drawn
from the entire text (graph).

• TopicRank[7]: A graph-based method that relies on a topi-
cal representation of the document.

For the statistical-based approaches the following are used as base-
lines:

• TFIDF: Term frequency-inverse document frequency, a com-
mon weighting technique in information retrieval and text
mining.

• KP Miner[12]: A model that makes use of the first position
a candidate phrase appears and the TFIDF measure as a
weight.

• YAKE[8]: A feature-based system for multi-lingual keyword
extraction from single documents.

4.4 Evaluation Results
First, we evaluated the algorithms based on the number of phrases
extracted. Figure 5 shows the F1 scores for NamedKeys and the other
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Figure 5: A comparison of the F1 score comparison across
the various keyphrase generation models.
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Figure 6: The precision, recall and F1 score of NamedKeys as
a function of the number of extracted keyphrases.

baseline approaches based on the extracted number of phrases be-
tween ten and thirty in increments of five. NamedKeys consistently
achieves the highest score with a performance gain of up to 35%
from the next best method. We also observe that almost all of the
algorithms achieve the highest F1 score when evaluated at 30. This
intuitively makes sense as the algorithms can achieve higher re-
call without much loss in precision as the number of extracted
phrases increases. From the figure, the three statistical approaches
(KP Miner, YAKE and TFIDF) achieve the worst F1 scores overall.
This can be attributed to the fact that such approaches mainly focus
on the number of times the candidate occurs and the position of
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Figure 7: Comparison of F1 scores on short abstracts (ones
with ten or lower assigned keyphrases).
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Figure 8: Comparison of F1 scores on long abstracts (ones
with eleven or more assigned keyphrases).

first occurrence. These heuristics are not typically important in
biomedical documents as phrases can be very important without
having to occur multiple times.
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We further investigate the impact of the number of extracted
keyphrases on NamedKeys. Figure 6 shows the precision, recall, and
F1. As more number of keyphrases are extracted, the precision
plateaus while the recall goes up. This shows that the candidate
phrases have good quality and we can improve the F1 score by
extracting more keyphrases without affecting the accuracy.

The number of keyphrases submitted by authors in the PubMed
articles varies widely ranging from as low as two to as high as thirty.
A fewer number of keyphrases are usually submitted for shorter
abstracts while longer abstracts have more keyphrases. To evaluate
the performance of NamedKeys and the baseline methods with
respect to the size of abstracts, we categorized the test set into short
and long abstracts. Short abstracts are the ones with ten or less
assigned keyphrases (710 abstracts) while long abstracts have more
than ten keyphrases (2339 abstracts). Figure 7 shows the perfor-
mance of the methods on short abstracts, where we only evaluate
the algorithms at five, ten, and fifteen keyphrases. Even though
NamedKeys still achieves the best average score, the performance
gains are not as large as the full test set (shown in Figure 5). This is
due to the fact that there are fewer possible keyphrases when the
abstract text is short. Figure 8 summarizes the performance of the
various models on long abstracts. We note that as the size of the text
gets larger, the baseline methods fail to extract relevant keyphrases.
However, NamedKeys maintains a consistent performance across
both long and short abstracts.

We also performed an ablation experiment to quantify the per-
formance gains for the various NamedKeys modules. We explored
four different settings:

• No NER: This is without using named entity recognition to
generate candidate phrases. Here we use only phrases that
are extracted by chunking on punctuations and stopwords.
These phrases are represented using phrased embedding.

• NER + Embed: This used named entity recognition to gen-
erate candidate phrases. Only named entities identified by
NER are used without chunked phrases. Named entities will
be embedded as single units to learn their vector representa-
tions.

• NER + Embed + chunk: Here we included named entities gen-
erated by NER and phrase chunks generated by our chunking
method. All the generated phrases will be embedded as a
unit by phrase embedding.

• NER + Embed + chunk + phraseQuality: This is the final com-
plete method including all the proposed modules. The added
phraseQuality component makes sure the candidates have
phraseness scores above the threshold set to be considered
candidates.

The results of the ablation experiment are shown in Table 1.Without
named entities, the performance is quite poor. Adding NER and the
phrase embeddings further improved the precision and recall at
all the different number of extracted keyphrases. The inclusion of
phrase chunking helped improve precision slightly, with minimal
impact to recall. The addition of the phrase quality measure has a
major impact in improving the recall, especially as the number of
extracted keyphrases improves. Although phrase quality negatively
affects precision, the gain from recall makes up for the overall
improvement in the F1 score.

Method @10 @15 @20 @25 @30
No NER P 0.24 0.20 0.17 0.15 0.13

R 0.17 0.20 0.24 0.26 0.30
F1 0.19 0.20 0.20 0.19 0.18

NER + Embed P 0.39 0.37 0.37 0.36 0.36
R 0.22 0.29 0.36 0.39 0.42
F1 0.28 0.32 0.36 0.37 0.39

NER + Embed+ chunk P 0.39 0.37 0.38 0.37 0.37
R 0.22 0.29 0.36 0.38 0.42
F1 0.28 0.32 0.37 0.37 0.39

NER + Embed + chunk + phraseQuality P 0.38 0.35 0.33 0.31 0.31
R 0.30 0.40 0.48 0.55 0.55
F1 0.34 0.37 0.39 0.40 0.40

Table 1: The effect of various modules of NamedKeys.

We also explored the impact of the clustering algorithm on the
model performance. While the previous experimental results use
the Affinity Propagation, we also experimented with spectral clus-
tering and agglomerative clustering with a different number of
clusters. Table 2 shows the results of the various clustering tech-
niques as a function of the number of clusters evaluated using 25
extracted keyphrases. As a baseline comparison, Affinity Propaga-
tion achieved an F1 score of 0.4 for the same number of extracted
keyphrases. Thus, the clustering technique has minimal impact on
the final results.

no. of clusters Spectral Clustering Agglomerative Clustering
1/4n 0.40 0.41
1/3n 0.40 0.40
1/2n 0.39 0.40
2/3n 0.41 0.39
4/5n 0.40 0.40

Table 2: Comparison of F1@20 for different clustering tech-
niques with various settings for the number of clusters.

5 CONCLUSION
In this paper, we introduced NamedKeys – a method composed
of four modules: Named Entity recognition, Phrase embedding,
Phrase quality score and similarity-based clustering for keyphrase
extraction from biomedical documents. To evaluate the proposed
method, we created a new publicly available benchmark dataset
from PubMed Central Open Access articles. Our unsupervised ap-
proach results in performances much better than all the eight statis-
tical and graph-based baselines at various numbers of keyphrases
extracted.

One potential limitation of this work is the relatively small size
of the benchmark dataset. To create the benchmark dataset, we
relied on author-provided keyphrases which are submitted during
article publication. Most of the PubMed Central Open Access ar-
ticles lack author-provided keyphrases or only just a few phrases
are submitted. As part of our future work, we plan to expand the
benchmark dataset by including keyphrases assigned by domain
experts.
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