
GASP: Graph-based Approximate Sequential
Pattern Mining for Electronic Health Records

Wenqin Dong1, Eric W Lee2[0000−0002−3839−2826], Vicki Stover
Hertzberg2[0000−0002−8834−4363], Roy L Simpson2, and Joyce C

Ho2[0000−0001−9168−3916]

1 Carnegie Mellon University
wenqind@andrew.cmu.edu

2 Emory University
{ewlee4,vhertzb,roy.l.simpson,joyce.c.ho}emory.edu

Abstract. Sequential pattern mining can be used to extract meaning-
ful sequences from electronic health records. However, conventional se-
quential pattern mining algorithms that discover all frequent sequential
patterns can incur a high computational and be susceptible to noise
in the observations. Approximate sequential pattern mining techniques
have been introduced to address these shortcomings yet, existing ap-
proximate methods fail to reflect the true frequent sequential patterns or
only target single-item event sequences. Multi-item event sequences are
prominent in healthcare as a patient can have multiple interventions for
a single visit. To alleviate these issues, we propose GASP, a graph-based
approximate sequential pattern mining, that discovers frequent patterns
for multi-item event sequences. Our approach compresses the sequen-
tial information into a concise graph structure which has computational
benefits. The empirical results on two healthcare datasets suggest that
GASP outperforms existing approximate models by improving recover-
ability and extracts better predictive patterns.

Keywords: Sequential Pattern Mining · Healthcare Data

1 Introduction

An increasing amount of electronic healthcare records (EHRs) are collected.
Sequential pattern mining (SPM) can help discover important or useful patterns
in such data [5] such as the sequence of health interventions that resulted in an
unfavorable outcome. Various SPM algorithms have been proposed to discover all
the frequent sequential patterns that satisfy a user-defined threshold, or support
count (we refer the reader to a survey on the topic [5]). Unfortunately, there are
several notable limitations that prevent the widespread usage of these algorithms:
computational complexity (in terms of time and memory), generation of noisy
frequent patterns, and development for single-item event sequences (or one item
per event sequences). However, EHRs are characterized by noisy, multi-item
event sequences (i.e., 1 or more items per event sequences). For example, a

2 W. Dong et al.

Table 1: An example of a sequential database (SDB).

SID Sequences

1 〈{53, 98}, {58, 98}〉
2 〈{257, 53}, {257, 58}〉
3 〈{10, 53}, {257, 259, 58}, {98}〉
4 〈{10}, {259, 53, 58}〉

patient can have multiple treatments for the same visit and the documentation
process can be prone to human errors. Thus exact SPMs are not always desirable.

Approximate SPM was proposed to alleviate limitations, by clustering similar
sequences together to obtain representative patterns [7,12] or utilizing different
data structures such as trees or graphs to approximate the subsequent patterns
[1,8] to minimize the number of passes through the data. Unfortunately, there
are several limitations of existing approximate SPM algorithms. The majority
of the algorithms are developed only for single-item event sequences and are
not easily generalizable to multi-item event sequences. Moreover, the empirical
results can fail to improve computational efficiency or suffer from poor recall.

We propose a Graph-based Approximate Sequential Pattern mining algo-
rithm, GASP, for multi-item sequential databases (SDBs) constructed from EHRs.
Our approach approximates the database as a new weighted graph structure. A
sampling-based approach is then utilized to efficiently identify frequent subse-
quences in the database while providing reasonable recall with the true patterns.
Our evaluation showcases that GASP requires comparable computational time
and memory footprints to state-of-the-art exact SPM methods. Moreover, the
approximate patterns contain better predictive power than the exact patterns.

2 PRELIMINARIES

2.1 Notation

Let I = {i1, i2, . . . , im} be the set of unique items (i.e., symbols or alphabets) in
the sequential database, SDB. An event or itemset, X, is an unordered collection
of items, and denoted as X = {i1, i2, . . . , ik}, where ij is an item from I. A se-
quence s is an ordered list of itemsets such that s = 〈X1, X2, . . . , Xn〉. A sequence
database contains a list of sequences and is denoted as SDB = 〈s1, s2, . . . , sp〉,
with p unique sequence identifiers. Table 1 provides an example of SDB which
contains four sequences (p = 4). A sequence sa = 〈a1, a2, . . . , am〉 is a subse-
quence of another sequence sb = 〈b1, b2, . . . , bn〉 if and only if there exist inte-
gers i1, i2, . . . , im such that 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n and a1 ⊆ bi1 , a2 ⊆
bi2 , . . . , am ⊆ bim . In other words, sa is contained in sb. From the first sequence
s1 in Table 1, one potential subsequence is 〈{53}, {98}〉.

GASP 3

2.2 Exact Sequential Pattern Mining

Given a sequential database, SDB, the goal of exact SPM is to find all the
frequent subsequences (i.e., sequential patterns) that occur in at least some user-
specified number of sequences in the SDB. Given the computational challenges
of SPM, CM-SPAM and CM-SPADE [11] have been proposed to achieve better
time and space scalability by pruning the candidate patterns. Although these
algorithms are relatively efficient, they can be susceptible to noise in the data
and can fail to deal with long, multi-event sequences.

2.3 Approximate Sequential Pattern Mining

Approximate SPM was proposed to identify “similar” patterns while reducing
noise in the patterns and improving computational efficiency. Since patterns
may not have a direct one-to-one correspondence to the exact SPMs, minimizing
the percentage of dissimilarity between the patterns have been proposed as the
objective [12]. Unfortunately, this is limited to single-event patterns and requires
specification of the error tolerance. We propose the following approximate SPM
framework based on average Levenshtein distance for multi-item SDB.

Definition 1. (Levenshtein distance). Given two sequences a, b, the Leven-
shtein distance is the minimum number of single-item edits, including insertions,
deletions, and substitutions, required to change a to the b or vice versa.

lev(a, b) =

|a| if |b| = 0

|b| if |a| = 0

lev(tail(a), tail(b) if a[0] = b[0]

1 +min

lev(tail(a), b)

lev(a, tail(b))

lev(tail(a), tail(b))

otherwise.

(1)

Given a string x, tail(x) refers to a string excluding the first character of x, and
starting with the index of 0, x[n] refers to the nth character of x.

Problem Statement. Let s be a frequent subsequence as defined above,
and s1, s2 be two arbitrary subsequences. s1 is a better approximation of s than
s2 if lev(s, s1) < lev(s, s2). Thus, the goal of approximate SPM is to discover a
list of subsequences, SA, that minimizes the average Levenshtein distance to a
pattern in the exact pattern list SE :

min
1

|SA|
∑
s∈SA

min
si∈SE

lev(s, si). (2)

Existing approximate SPM methods can be grouped into two approaches.
The clustering approaches, such as ApproxMap [7] and a Hamming Distance-
based model [12], mine consensus patterns by grouping the frequent patterns

4 W. Dong et al.

based on similarity. Yet these algorithms produce poor recall and require addi-
tional parameters (i.e., number of clusters). Another area of work tackle online
data streams to identify patterns using a single pass of the data such as GraSeq
[8], a graph-based approximate SPM algorithm. GraSeq transformed sequences
into a directed weighted graph structure with only one scan of data and intro-
duced a non-recursive depth-first search algorithm to acquire approximate se-
quential patterns. Unfortunately, these works are developed only for single-item
sequences and a näıve extension of single-item sequences to multi-item sequences
does not yield desirable results (as demonstrated by our empirical results).

3 GASP

We introduce GASP, a graph-based approximate SPM model, to address the limi-
tations of existing approximate SPM algorithms. GASP transforms the SDB into
a Markov chain graph, G and uses a probabilistic generative model to extract the
sequential patterns. G can be viewed as a random sample of the original SDB
and thereby retains the same bounds on accuracy of the discovered patterns [10].

3.1 Subsequence Generation

Our graph G captures the order and relation between all the items I in the SDB.
Since the SDB can have multiple items per event, GASP distinguishes between
the two scenarios where the two items occur in the same event (type 1), and two
items occur in chronological order (type 2).

Definition 2. (1-subsequence). For a sequence s, a 1-subsequence is y = 〈ik〉
for all ik ∈ X1 ∪X2 ∪ ... ∪Xn.

Definition 3. (2-subsequence-type-1). For a sequence s, a 2-subsequence-
type-1 is z(1)= 〈ik, ij〉 for all ik, ij ∈ Xp such that 1 ≤ p ≤ n.

Definition 4. (2-subsequence-type-2). For a sequence s, a 2-subsequence-
type-2 is z(2)= {〈ik〉, 〈ij〉} for all ik ∈ Xp, ij ∈ Xq and p < q.

GASP scans all the sequences in SDB exactly once to determine all the fre-

quent item sets Y= {y1, y2, ...}, Z(1)= {z(1)1 , z
(1)
2 , ...}, and Z(2)= {z(2)1 , z

(2)
2 , ...}

and its frequency. As all supersets of infrequent patterns are infrequent, subse-
quences in Y, Z(1), Z(2) that fall below the support count are pruned.

3.2 Graph Construction

GASP constructs a mixed-type graph, G = (V,E), where V is the set of vertices
that represent an item, and E is the set of edges (directed and undirected) to
represent the ordering or relation between two items. Each vertex, Vi, corre-
sponds to the ith 1-subsequence in Y. Since items that occur in the SDB are

GASP 5

(a) A example of the partially
constructed graph.

(b) A example of random walk to extract
{〈53, 98〉, 〈98〉}.

Fig. 1: A simplified example of the graph constructed and one iteration of the
random walk. Only partial edges are shown in (a). Each node refers to the item
in SDB and has a starting item probability (π). A blue dotted undirected edge
denotes a type-1 edge and a green directed edge denotes a type-2 edge. Each
edge contains the edge weight, event transition weight, and ending probability
(w, α, β). For (b), the selection is node 98, type-1 edge with node 53, type-2
edge with node 98 and then terminated to obtain {〈53, 98〉, 〈98〉}.

more likely to be part of a frequent pattern, the start probability is set to reflect

the likelihood of the item occurring in the SDB: πi = freq(yi)∑
j freq(yj)

.

An undirected edge, (vi ↔ vj), represents two items occurring in the same
event (or an item in Z(1)). A directed edge, (vi → vj), denotes the sequential
relationship between vi and vj , such that vi occurs in an event prior to vj (or
an item in Z(1)). A weight function, w, is associated with each edge based on

the frequency of the particular item set, i.e., w(vi ↔ vj) =
freq(<vi,vj>)∑
` freq(<vi,v`>) . The

likelihood of staying in the same event is also a function of how many items
typically occur in the same event with a specific item.

Proposition 1 The number of items in an event, Xk with item ij, is bounded
by the maximum number of items in any Xj that contains the item ij across all
the sequences in the SDB, 〈s1, s2, . . . , sp〉.

Given Proposition 1, we introduce a new event transition weight function, α, to
capture the likelihood that the next item will be from the same event conditioned
on sampling item ij . Let |Xk| denote the number of items in the event k. For a
sequence s, if vj occurs in the kth event, αs is defined as:

αs(vi ↔ vj) =
|Xk| − 2

|Xk| − 2 +
∑n

z=k+1 |Xz|

αs(vi → vj) =
|Xk| − 1

|Xk| − 1 +
∑n

z=k+1 |Xz|
(3)

6 W. Dong et al.

Then, α is the average weight across all sequences with the item ij .
Another limitation of existing approximate SPM algorithms is the need to

provide a user-defined length for the extracted patterns. We propose to model
the length of a candidate pattern as a random variable L. We first introduce two
propositions to bound the length of the pattern.

Proposition 2 The length of a frequent subsequence, ` is bounded by the max-
imum length of all subsequences in the SDB, ` ≤ max

i=1,...,p
|si|.

Thus the empirical cumulative distribution, P (L ≤ `), can serve as an upper
bound for the maximum number of events in a candidate pattern. Yet, this is
independent of the items in the pattern.

Proposition 3 Given the presence of an item, ij, in the frequent subsequence,
the maximum length of the subsequence is bound by the length of the sequences
in the SDB that contain ij: ` ≤ max

ij∈si,∀i=1,...,p
|si|.

Conceptually, if some items occur towards the end of a sequence in the SDB,
their presence can be used to terminate the candidate pattern. We introduce a
new end weight function, β, to calculate the likelihood that it will terminate the
pattern. If vi, vj occurs in the sequence s, βs is defined as:

βs(vi ↔ vj) = 1−
∑n

z=k+1 |Xz|+ |Xk| − 2∑n
z=1 |Xz|

βs(vi → vj) = 1−
∑n

z=k+1 |Xz|+ |Xk| − 1∑n
z=1 |Xz|

. (4)

The final weight, β is then calculated as the average of the βs weights across all
sequences in the SDB. Figure 1(a) shows the graph for Table 1.

3.3 Random Walk

Random walk was introduced to simulate the likely paths through the graph [9].
Using the same premise, edges, and vertices that have higher weights (or likeli-
hoods) in G, should be traversed more often as they occurred more frequently in
the original SDB. To account for the new weight functions and ending probabil-
ity, GASP uses a modified random walk algorithm. The random walk edge weight,
d, is determined by the edge weight w and the event transition weight α:

d(vi, vj) = w(vi, vj)× α(vi, vj) (5)

The stopping criteria for random walk is also adapted to reflect the number of
items currently in the pattern, ˜̀ and the sampled edge, (vi, vj). The iteration is
stopped based on a Bernoulli random variable

L(˜̀, (vi, vj)) ∼ Bernoulli(
1

2
P (L ≤ ˜̀) +

1

2
β(vi, vj)) (6)

GASP 7

Algorithm 1 RandomWalk

1: s = Draw vi randomly using πi and set v = vi
2: while True do
3: Calculate the edge weight for all outgoing edges d(vi, vj) = α(vi, vj)w(vi, vj).
4: Choose the new vertex vj based on edge weight, d(vi, vj).
5: Append vj to the sequence s and set v = vj .
6: Sample pattern end using Eq. (6)
7: end while
8: Return candidate pattern s

The detailed steps of our customized random walk are summarized in Algo-
rithm 1 with an example provided in Figure 1(b). Upon the completion of a
pattern, the weights of all the edges traversed are summed up to yield the final
weight of this particular sequence. These cumulative weights are used for the
final candidate pattern ranking.

3.4 Algorithm Complexity

Let P represent the number of sequences in the SDB, N the maximum number
of items for a subsequence, I the number of unique items, and L the number
of random walk iterations. Since GASP only requires a single scan through the
SDB, the graph generation has a computational complexity of O(PN2). For the
random walk, the complexity is O(ILN). Hence, the computational complexity
of GASP is O(PN2 + ILN). The memory complexity of GASP is dominated by
the graph and the generated patterns. Only 2-subsequences along with their
weight and various probabilities are stored in memory (O(I2)). In the random
walk stage, the worst memory scenario is a distinct pattern for each iteration
(O(LN)). Thus, the memory complexity is O(I2 + LN).

4 Experiment Setup

4.1 Dataset

We employed two healthcare datasets to assess the performance of GASP. CMS
is a synthesized and publicly available dataset provided by the Centers for Medi-
care and Medicaid Services3. This dataset contains information about the pa-
tients’ diagnosis on their visits between the period 2008 to 2009. To construct the
SDB, the patient visits are sorted in chronological order and the International
Classification of Diseases (ICD-9) billing diagnosis codes are extracted. Clinical
Classifications Software (CCS) codes [6] are used to group ICD-9 into broader
categories. The Nursing Electronic Learning Lab (NELL) dataset includes elec-
tronic health records (EHRs) from Emory Healthcare for type 2 diabetes pa-
tients with new onset of cardiovascular disease (CVD) and matched controls. It

3 https://www.cms.gov/research-statistics-data-and-systems/

Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF

https://www.cms.gov/research-statistics-data-and-systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF
https://www.cms.gov/research-statistics-data-and-systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF

8 W. Dong et al.

Table 2: Characteristics of each SDB.

Dataset |P | |I| Avg |si| Avg |Xk|

CMS 68,185 283 40.96 2.22
NELL 12,576 260 12.65 8.55

includes 2,112 cases and 10,464 controls. We extracted diagnosis codes for all
patients prior to the CVD index date and group them using CCS codes. The
characteristics of the SDBs are summarized in Table 2.

4.2 Experimental Design

All the experiments were run on a single machine, an Amazon EC2 r5.4xlarge
instance, with 16 CPU cores and 128GB memory.

4.3 Baseline Methods

We compared GASP with the following SPM algorithms: (1) CM-SPAM [11], (2)
CM-SPADE [11], (3) GraSeq (fixed), a modified approximate algorithm based
on GraSeq [8] to support multi-item event sequences where items in the same
event are considered as a single vertex in the graph, (4) GraSeq (variable), an
extension of the GraSeq (fixed) to use our proposed random walk algorithm
combined with the sequential pattern ending probability to generate variable-
length patterns. GASP, GraSeq (fixed), and GraSeq (variable) are implemented
in Python 3.6. The random walk utilizes multiple threads to further reduce
running time on machines with multiple CPUs. The code will be open-sourced in
Github upon acceptance4. For CM-SPAM and CM-SPADE, we used the SPMF
library [4] implementations in Java5. FAST [3] and ApproxMap were considered,
but the results are omitted due to the poor performance. Other approximate
SPM algorithms were not publicly released and thus not compared.

4.4 Evaluation Metrics

We compared the SPM algorithms from multiple perspectives:

– Computation Time: The total running time of the algorithm.
– Memory Usage: The maximum memory consumed by the algorithm.
– Levenshtein distance: The measure defined in Eq. (2).
– Precision & Recall : Two measures to capture the relevance of the patterns

extracted from the approximate SPM.

Prec =
|SA ∩ SE |
|SA|

, Rec =
|SA ∩ SE |
|SE |

4 https://github.com/cynthiadwq/GASP
5 https://www.philippe-fournier-viger.com/spmf/

https://github.com/cynthiadwq/GASP
https://www.philippe-fournier-viger.com/spmf/

GASP 9

Table 3: Comparison of SPM algorithms on the two datasets. The memory is
reported in megabytes and time is in seconds.

CMS NELL
Model Time Mem. Prec. Rec. Lev. Time Mem. Prec. Rec. Lev.

CM-SPAM 3798 1937 1.0 0.975 0.034 110 1280 1.0 0.749 0.202
CM-SPADE 815 11008 – – – 113 2276 – – –
GraSeq (fixed)-5M 304 591 0.106 0.085 1.656 110 481 0.101 0.076 1.697
GraSeq (variable)-5M 311 653 0.147 0.130 1.347 101 352 0.122 0.107 1.458
GASP-5M 322 1036 0.195 0.381 0.527 109 533 0.125 0.255 0.914
GASP-10M 426 1491 0.230 0.507 0.409 219 957 0.172 0.396 0.716

5 Experimental Results

5.1 Pattern Recoverability

CMS The exact SPM algorithms were run using a support threshold of 20%
and yielded 127,941 and 124,776 frequent patterns for CM-SPADE and CM-
SPAM, respectively. Since CM-SPADE resulted in more patterns, it was used
as the ground truth. Table 3 summarizes the performance of the SPM meth-
ods on the CMS dataset. GASP can achieve a reasonable approximation of the
exact frequent patterns generated by CM-SPADE in terms of Levenshtein dis-
tance without requiring a trade-off in terms of time or memory. To extract the
frequent patterns using CM-SPADE, it uses almost 10× more memory than
GASP with 10 M iterations. Moreover, for CM-SPAM, it requires almost 10× the
computational time than GASP to produce similar patterns to CM-SPADE. The
results also illustrate the importance of variable-length pattern as GraSeq (vari-
able) outperforms GraSeq (fixed) in terms of pattern recoverability. Moreover,
GASP (5M) outperforms GraSeq (variable) across all three measures, highlighting
the benefit of modeling the different types of two-item subsequences.

NELL The exact SPM algorithms were run using a support threshold of 1% and
yielded an average of 1,459,820 and 1,085,201 frequent patterns for CM-SPADE
and CM-SPAM, respectively. The results from Table 3 show that GASP-10M is
able to identify almost 40% of the original patterns of CM-SPADE, whereas CM-
SPAM extracts almost 75% of the original patterns. Moreover, the Levenshtein
distance between the original patterns and patterns generated by GASP is less
than 1 whereas the two variants of GraSeq have Levenshtein distance greater
than 1 and identifies only 10% of the original patterns. While the computation
time is similar across CM-SPAM, CM-SPADE, and GASP-5M, GASP-5M requires
almost half the memory of CM-SPAM and quarter of the memory of CM-SPADE.

5.2 Pattern Usefulness

We evaluate the usefulness of the extracted patterns as a feature for risk pre-
diction of CVD on NELL. We performed 5 random, stratified 70-30 train-test

10 W. Dong et al.

Fig. 2: The ROC curve and AUC score for risk prediction of CVD.

splits where frequent patterns are extracted using the train set, and then the
top 500 patterns are used to construct binary features (i.e., the occurrence of
the pattern). An XGBoost model [2] is trained and the performance is evaluated
using the receiver operating characteristic (ROC) curve and the area under the
ROC curve (AUC) shown in Figure 2. GASP-5M and GASP-10M outperform exact
SPM models in terms of AUC. This indicates that exact SPM models identify
many noisy patterns while GASP generates patterns that are more useful for risk
prediction. The results also demonstrate the insensitivity to the specification of
the random walk iterations (5 M versus 10M) as there is a limited difference in
predictive power. Finally, the results illustrate the impact of approximation to
combat the noise inherent in EHRs.

6 Conclusions

In this paper, we propose GASP, a new approach for approximate SPM of EHRs.
We present a new weighted graph structure using both directed and undirected
edges which compresses the sequential information. We also introduce a variant
of a random walk model to extract variable-length sequential patterns. Empir-
ical evaluations on two EHR databases suggest that GASP reduces the noise in
patterns and can enhance pattern usefulness without sacrificing computational
and memory efficiency. As approximate SPM is applicable to many other appli-
cations, future work can focus on evaluation across multiple domains.

Acknowledgements. This work was supported by the National Science Founda-
tion award IIS-#1838200 and the National Institutes of Health (NIH) awards
1R01LM013323 and 5K01LM012924.

References

1. Chang, J.H., Lee, W.S.: Efficient mining method for retrieving sequential patterns
over online data streams. Journal of Information Science 31(5), 420–432 (2005)

GASP 11

2. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proc. of
KDD. pp. 785–794 (2016)

3. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast vertical mining
of sequential patterns using co-occurrence information. In: Proc. of PAKDD. pp.
40–52 (2014)

4. Fournier-Viger, P., Lin, J.C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng,
Z., Lam, H.T.: The spmf open-source data mining library version 2. In: Proc. of
ECML/PKDD. pp. 36–40 (2016)

5. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey
of sequential pattern mining. Data Science and Pattern Recognition 1(1), 54–77
(2017)

6. Geraci, J.M., Ashton, C.M., Kuykendall, D.H., Johnson, M.L., Wu, L.: Interna-
tional classification of diseases, 9th revision, clinical modification codes in discharge
abstracts are poor measures of complication occurrence in medical inpatients. Med-
ical care pp. 589–602 (1997)

7. Kum, H.C., Pei, J., Wang, W., Duncan, D.: Approxmap: Approximate mining of
consensus sequential patterns. In: Proc. of SDM. pp. 311–315 (2003)

8. Li, H., Chen, H.: Graseq: A novel approximate mining approach of sequential
patterns over data stream. In: Proc. of ADMA. pp. 401–411 (2007)

9. Pearson, K.: The problem of the random walk. Nature 72(1867), 342–342 (1905)
10. Räıssi, C., Poncelet, P.: Sampling for sequential pattern mining: From static

databases to data streams. In: Proc. of ICDM. pp. 631–636 (2007)
11. Salvemini, E., Fumarola, F., Malerba, D., Han, J.: Fast sequence mining based on

sparse id-lists. In: Proc. of ISMIS. pp. 316–325 (2011)
12. Zhu, F., Yan, X., Han, J., Philip, S.Y.: Efficient discovery of frequent approximate

sequential patterns. In: Proc. of ICDM. pp. 751–756 (2007)

	GASP: Graph-based Approximate Sequential Pattern Mining for Electronic Health Records

