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ABSTRACT
Extracting patterns and deriving insights from spatio-temporal data
finds many target applications in various domains, such as in urban
planning and computational sustainability. Due to their inherent
capability of simultaneously modeling the spatial and temporal
aspects of multiple instances, tensors have been successfully used
to analyze such spatio-temporal data. However, standard tensor
factorization approaches often result in components that are highly
overlapping, which hinders the practitioner’s ability to interpret
them without advanced domain knowledge. In this work, we tackle
this challenge by proposing a tensor factorization framework, called
CP-ORTHO, to discover distinct and easily-interpretable patterns
from multi-modal, spatio-temporal data. We evaluate our approach
on real data reflecting taxi drop-off activity. CP-ORTHO provides
more distinct and interpretable patterns than prior art, as mea-
sured via relevant quantitative metrics, without compromising the
solution’s accuracy. We observe that CP-ORTHO is fast, in that it
achieves this result in 5x less time than themost accurate competing
approach.
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1 INTRODUCTION
Spatio-temporal data analysis refers to the extraction of insights out
of data containing spatial and temporal properties. A fundamental
task is to automatically identify the underlying temporal trends
and location patterns for sub-groups of the data instances. In urban
planning, for instance, the identification of underlying temporal
trends and location patterns is essential for city planners and traffic
managers in order to improve a city’s road infrastructure.

A crucial characteristic of spatio-temporal datasets is that they
are inherently multi-modal, due to the simultaneous presence of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5490-5/17/11.
https://doi.org/10.1145/3139958.3140047

both location and time modes which describe each of the avail-
able instances. Thus, one of the most natural ways to model such
datasets is via tensors (i.e., multi-way arrays) [8]. One of the most
popular tensor analysis methods is the canonical polyadic (CP) de-
composition (also known as PARAFAC or CANDECOMP) [4, 6]. CP
decomposes a tensor into a sum of (rank-one) outer products which
effectively represents the underlying data concepts. Its popularity
owes to its intuitive output structure and uniqueness property that
make the model reliable to interpret [8, 9]. However, the resulting
factors of the CP model are usually highly overlapping, which ham-
pers their interpretability without advanced domain knowledge. In
order to obtain more concise and easily-interpretable results, we
would prefer the solution’s components to be as distinct as possible.
While prior art [11] has attempted to tackle this challenge, it pro-
motes non-overlapping results for a specific, fixed tensor mode; such
an objective is still limited by the need for prior domain knowledge
or even an arbitrary choice of a tensor mode.

To tackle the challenges introduced above, we propose CP-
ORTHO, a non-negative tensor factorization framework to dis-
cover distinct and easily-interpretable patterns from multi-modal,
non-negative data. We propose a fast projected gradient optimiza-
tion scheme to fit our objective. Our experimental evaluation on a
real, publicly-available dataset showcases that CP-ORTHO achieves
the best of both worlds in terms of solution distinctiveness and
speed, without sacrificing the model’s accuracy. To promote re-
producibility, our code is open-sourced and publicly available at
https://github.com/aafshar/CP-ORTHO.

2 PRELIMINARIES AND NOTATION
The order indicates the number of tensor modes (N ). R denotes the
number of pursued components (tensor rank). Matricization is the
process of converting a tensor into a matrix without changing its
values. The mode-n matricization ofX ∈ RI1×....×IN is indicated as
X(n) ∈ RIn×I1 ..In−1In+1 ..IN . The multiplication of tensor X with N
vectors in N modes is X>N

n=1A
(n) = X ×1 A

(1)
r ×2 A

(2)
r ... ×N A

(N )
r

where and A(n)
r is the r-th factor (column) of mode n and ×n indi-

cates the multiplication in mode n. The tensor inner product of X
andY is defined as [7]:X•Y = ∑I1

i1=1
∑I2
i2=1 ....

∑IN
in=1 Xi1i2 ...inYi1i2 ...inA rank-one tensor X is equal to the outer product of N vectors:

X = A(1) ◦ A(2) ◦ .... ◦ A(N ). The CANDECOMP-PARAFAC (CP)
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Table 1: Symbols and notations used.

Symbol Definition
* Element-wise Multiplication
◦ Outer product
⊙ Khatri Rao Product

⟨A,B⟩ Vector Inner Product
• Tensor Inner Product>

Tensor-Vector Multiplication
X Tensor
X(n) Mode-n Matricization of X
X(i) ith rank-one tensor of X
A(n) Factor matrix corresponding to the n-th mode
Ar r -th column of matrix A

Figure 1: Decomposing tensor X into R rank-one tensors.

decomposes a tensor X as the sum of rank-one tensors, as follows:
X ≈ ∑R

r=1 λrA
(1)
r ◦A(2)

r ◦ ... ◦A(N )
r = [ λ;A(1);A(2); ...;A(N )] where

λr is the weight corresponding to the r-th rank-one tensor. Fig-
ure 1 illustrates the CP decomposition of a third-order tensor in
more detail. Two rank-one tensorsX(i) andX(j) are orthogonal [7]
(X(i) ⊥ X(j)) iff

X(i) • X(j) =
N∏
n=1

⟨A(n)
i ,A

(n)
j ⟩ = 0, (1)

where factors (A(n)
i ) are unit vectors. The definition suggests that

two rank-one tensors are orthogonal if at least one pair of their
decomposed factors has a zero inner product. When the input data
and the decomposed factors are non-negative, the above property
implies that there is no overlap between them, thus improving
interpretability. Table 1 summarizes the notations used in this paper.

3 THE CP-ORTHO APPROACH
3.1 Problem Formulation
We express the spatio-temporal dataset as an observed non-negative
tensor X with size I1 × I2 × · · · × IN . CP-ORTHO decomposes the
input tensor into R rank-one tensors such that each of them is
orthogonal to all others. We thus reduce the overlap between rank-
one tensors to capture more distinct and meaningful patterns.

In Section 2, we revised the definition of tensor orthogonality re-
garding two rank-one tensors. In real-life data mining applications,
a tensor is usually approximated as a sum of R rank-one compo-
nents. Thus, we below extend the definition of orthogonal tensors,
assuming they can be decomposed into R components. Thus, to
ensure every pair of rank-one tensors i, j ∈ [1,R] is orthogonal to
each other, we require that:

R∑
i=1

R∑
j=i+1

X(i) • X(j) =
R∑
i=1

R∑
j=i+1

N∏
n=1

⟨A(n)
i ,A

(n)
j ⟩ = 0 (2)

We introduce a newmatrixQ , which is the element-wise product
of the individual factor similarity matrices (A(n)TA(n)).( (

A(1)TA(1)) ∗ (
A(2)TA(2)) ∗ ... ∗ (

A(N )TA(N )) ) = Q . (3)

Q is a symmetric R × R matrix where each element is:

Qi j = X(i) • X(j) =
N∏
n=1

⟨A(n)
i ,A

(n)
j ⟩

It is important to note that Q should only be non-zero along the
diagonal if all the rank-one tensors are orthogonal to one another,
and will be exactly equal to the identity matrix I if their decomposed
factors are also unit vectors.

Spatio-temporal data can usually be represented as event occur-
rences. Thus, our input tensor consists of non-negative values. In
that case, interpretability is improved if the CP decomposition is
constrained to contain non-negative factors as well (where both
the weights and the factor matrices are non-negative). To summa-
rize the above constraints, we provide the following constrained
optimization problem:

F = min
λ,A(1), · · · ,A(N )

1
2




X −
[
λ;A(1);A(2); ...;A(N )

]


2
F

(4)

s.t.
( (
A(1)TA(1)) ∗ ... ∗ (

A(N )TA(N )) ) = I (5)


A(n)
r




2 = 1 ,∀n, r (6)

A(n) ∈ [0, 1]In×R , λ ∈ [0,+ 8)R

The first constraint (5) is the orthogonality constraint for the R
rank-one tensors, and constraint (6) indicates that each column of
the factor matrices must sum to one. The last two constraints are
the nonnegative constraints on the weights and the factor matrices.

3.2 Algorithm
Since restricting the tensor decomposition to only orthogonal rank-
one tensors can yield undesirable results (fitting noise or poor ap-
proximation of the observed tensor), we relax the orthogonality and
unit-norm constraints [1]. This also allows us to use a first-order
optimization algorithm to find the solution. We use the quadratic
penalty method and convert the orthogonality and unit-norm con-
straints to penalty terms. Note that while our problem still has
nonnegative constraints, we can utilize projected gradient descent
to discover the weights and the factor matrices simultaneously.
For notational convenience, we reformulate the objective function
(4) and the orthogonality and unit vector penalty terms using the
mode-n matricization of our tensor, X. The new objective function
is:

F = 1
2




X(n) −A(n)Φ(n)T



2
F
+
ψb
2

N∑
n=1

R∑
r=1

( 


A(n)
r




 − 1
)2

︸                                                              ︷︷                                                              ︸
F1

+
ψa
2




((A(n)TA(n)) ∗Cn ) − I



2
F︸                                  ︷︷                                  ︸

F2
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whereψa andψb are the regularization parameters, Φ(n) = (λT ⊙
A(N ) ⊙ · · · ⊙An+1 ⊙An−1 ⊙ · · · ⊙A(1)), andCn = (A(1)TA(1)) ∗ · · · ∗
(A(n−1)TA(n−1)) ∗ (A(n+1)TA(n+1)) ∗ · · · ∗ (A(N )TA(N )).
Projected Gradient Descent. The gradient can be computed by
taking the partial derivative with respect to all the factors simulta-
neously, vectorizing the partials, and concatenating them together
(i.e., x = vec(A(1), ...,A(N ))) [2]. After computing the gradient,
we can use any first-order optimization method. Since our opti-
mization problem has non-negativity constraints, we implement
the projected gradient descent method [10] to solve the problem.
To ensure a sufficient decrease in the function at each iteration,
we use backtracking line search [12] to find a sufficient value
for the step size by ensuring the step size meets the condition
F − Fprev < α ▽ FT (x − xprev ). We use two model parameters
related to the two backtracking line search shrinkage, αA and αλ .

The full implementation details along with the detailed gradient
computations will be provided in the extended version of this paper.

4 EXPERIMENTS
We compare the performance of CP-ORTHO with existing methods
for constrained CP decomposition: CP-NMU [3], CP-APR [5], and
Rubik [11]. A grid search for the best parameters was conducted.
The final parameter values for NYC Taxi dataset for R = 5 are:
ψa = 15000,ψb = 15000, αA = 4e − 5, and αλ = 4e − 9. For Rubik,
we also performed a grid search with respect to its orthogonality
parameter and used the value 100 which had the best result.

All experiments are conducted on a PC with a 3.6GHz i7 CPU
and 32Gb RAM. Our code is open-sourced and publicly available at
https://github.com/aafshar/CP-ORTHO.

4.1 Data Description
We evaluate CP-ORTHO on NYC Taxi Data1 of taxi trips, as pro-
vided by the New York City (NYC) Taxi and Limousine Commis-
sion. We use all the data from January 2015 to June 2016 which has
215,519,509 trips (average of 393,283 trips per day). We investigate
a rectangular area of 40 km × 31 km that covers Manhattan and
some of the surrounding boroughs. The area is divided into grids of
250 meter × 250 meter. A third-order binary tensor is constructed
from the drop-off data that represents 19,200 grid cell locations for
24 hours by 7 days.

4.2 Quantitative Metrics
Since all four models are only guaranteed to converge to local
minima, we evaluate all competing approaches by running them
for 10 random initializations. Table 2 reports the average and best fit
over these 10 runs, as well as the mean running time. Regarding the
accuracy of the solution, the results suggest that the mean and best
fit of CP-ORTHO are comparable or better than the other models.
At the same time, CP-ORTHO is 5 times faster than CP-APR, which
is the most accurate competing method.

We propose two quantitative measures to assess a model’s abil-
ity to produce interpretable results. The measures correspond to
the ability to produce distinct patterns and “hard” cluster results.
Distinct patterns make the assignment of meaning and interpreta-
tions to the factors easier. Thus, the pattern distinctiveness metric,
captures to what extent the discovered patterns are distinct form
1Dataset available at http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

Table 2: Comparison of fit and running time (10 seeds).

Fit Running Time (ms)
Algorithm Mean ± std. Best Mean ± std.
CP-ORTHO 0.7330±0.0065 0.7384 1569±612
CP-APR [5] 0.7371±0.0022 0.7381 7940±861
CP-NMU [3] 0.7266±0.0054 0.7306 93 ±20
Rubik [11] 0.6852±0.0042 0.6894 2806±125

each other via the pairwise orthogonality of the rank-one tensors of
components,

∏N
n=1⟨A

(n)
i ,A

(n)
j ⟩, ∀i, j ∈ [1,R], i < j. For this metric,

we desire lower values as it corresponds to pairs of components
that are (close to) orthogonal. Table 3 summarizes the average
pairwise pattern distinctiveness of the four models. CP-ORTHO
has the lowest orthogonality between the pairs of corresponding
components.

Table 3: Comparison of pattern distinctiveness (lower is better) and cluster
membership (∆C ) values over all tensor elements (higher is better) for the
best initialization.

Pattern Distinctiveness Cluster Membership(∆C)
Algorithm Mean ± std. Mean ± std.
CP-ORTHO 0.1386±0.0646 0.5774±0.2995
CP-APR 0.16763±0.1064 0.4978±0.2912
CP-NMU 0.49234±0.1314 0.2418 ±0.2056
Rubik 0.21640±0.1064 0.3800±0.2300

The second measure captures the ability of each method to pro-
duce a factorization that discriminatingly assigns samples to a
corresponding pattern, i.e. the “hardness” of the clustering. Each
factor element of the rank-one can be interpreted as the corre-
sponding score of how much it belongs to each pattern. Thus, we
analyze cluster membership score, the difference between the high-
est and second-highest pattern membership score, to capture how
clearly the factorization assigns each element to a distinct pat-
tern. The cluster membership score, ∆C , is calculated as: ∆Ci jk =
λr ′A

(1)
r ′i
A
(2)
r ′j
A
(3)
r ′k

−λr ′′A
(1)
r ′′i
A
(2)
r ′′j
A
(3)
r ′′k
, where r ′ , r ′′ are the indices of the

components which have the highest and second-highest member-
ship scores, respectively. Larger values of ∆C are desirable as they
indicate that the element in question strongly belongs to the compo-
nent with the highest score. Table 3 summarizes the results of each
model’s hard clustering ability. CP-ORTHO results in significantly
“harder” clustering of the samples into components/patterns than
other approaches.

4.3 Case Study on NYC Taxi Data
Below, we study the patterns extracted from the methods under
comparison. In Figure 2, we assign each combination of (day, hour)
to a certain rank-one component (out of 5). To do so, we compute
the outer product A(2)

i ◦ A(3)
i for each i-th component. Then, we

assign each (day, hour) combination to the component with the
maximum value in the corresponding entry of the outer product.
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(a) CP-ORTHO (b) CP-APR (c) CP-NMU (d) RUBIK

Figure 2: Visualization of the contribution of each of the 5 output components to each (time, day) combination. We partially (considering the temporal modes
only) re-construct the input for each i-th rank-one component separately, by computing the outer product A(2)

i ◦A(3)
i . Then, we assign then the color of each (day,

time) combination based on the highest value of the 5 corresponding re-constructed ones. Monday is Day 0 on the x-axis.

From the CP-ORTHO diagram (Figure 2a), we can see minimal
overlap between the weekend and weekdays. Components 1, 2 and
3 describe the weekdays, while components 4 and 5 describe the
weekend. For instance, component 1 (green) captures the behavior
from 7:00 AM to 5:00 PM on a workday. This is likely associated
with the fact that most people go to work or commute between
different work places. Another interesting pattern that is identified
by our model is the separation of the early morning time period
(12:00 AM to 6:00 AM) into two components. Component 2 captures
the drop-off locations from Monday to Thursday while component
5 describes the drop-off patterns from Friday to Sunday. This seems
to encapsulate the differences between people who work the early
shifts during the weekdays and the party-goers who are returning
home after a night out. The competing approaches do not to capture
the distinction between weekends and week-days as concisely.

We also analyzed the drop-off locations (spatial mode) of our
model. We focus on the components that have the highest spatial
differences. Figure 3 shows the drop-off locations corresponding to
components 1 and 5 for CP-ORTHO. One can see that the drop-off
locations for component 1 (Figure 3a) are primarily in Manhattan,
whereas the drop-off locations for component 5 (Figure 3b) are more
spread out over all the boroughs including the Bronx, Brooklyn,
and Queens. We will provide more extensive experimental results
in the paper’s extended version.

(a) Component 1 (b) Component 5

Figure 3: Values of drop-off locations for two different components from
CP-ORTHO.

5 CONCLUSION
In this work, we propose CP-ORTHO, a tensor factorization frame-
work enabling to find more meaningful and distinct patterns in
spatio-temporal data. As measured via relevant quantitative met-
rics, CP-ORTHO provides more distinct and interpretable patterns
than prior art, without compromising the solution’s accuracy. It
is also fast, in that it achieves this result in 5x less time than the
most accurate competing approach. Future directions include: 1)
extending the model to include count data using KL-divergence; 2)
incorporating alternative optimization approaches to reduce the
number of hyper-parameters; 3) proposing an explicit metric for
hard clustering in tensor factorization.
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