LSH: A Survey of Hashing for Similarity Search

CS 584: Big Data Analytics
LSH Problem Definition

- Randomized c-approximate R-near neighbor or (c,r)-NN: Given a set P of points in a d-dimensional space, and parameters $R > 0, \delta > 0$, construct a data structure such that given any query point q, if there exists an R-near neighbor of q in P, reports some cR neighbor of q in P with probability $1 - \delta$

- Randomized R-near neighbor reporting: Given a set P pf points in a d-dimensional space, and parameters $R > 0, \delta > 0$, construct a data structure such that given any query point q, reports each R-near neighbor of q with a probability $1 - \delta$
LSH Definition

- Suppose we have a metric space S of points with a distance measure d

- An LSH family of hash functions, $\mathcal{H}(r, cr, P_1, P_2)$, has the following properties for any $q, p \in S$

 - If $d(p, q) \leq r$, then $P_\mathcal{H}[h(p) = h(q)] \geq P_1$

 - If $d(p, q) \geq cr$, then $P_\mathcal{H}[h(p) = h(q)] \leq P_2$

- For family to be useful, $P_1 > P_2$

- Theory leaves unknown what happens to pairs at distances between r and cr
LSH Gap Amplification

- Choose L functions $g_j, j = 1, \ldots, L$

 - $g_j(q) = (h_{1,j}(q), \ldots, h_{k,j}(q))$

 - $h_{k,j}$ are chosen at random from LSH family \mathcal{H}

- Retain only the nonempty buckets (since total number of buckets may be large) - $O(nL)$ memory cells

- Construct L hash tables, where for each $j = 1, \ldots, L$, the nth hash table contains the datapoint hashed using the function g_j
LSH Query

- Scan through the L buckets after processing q and retrieve the points stored in them

- Two scanning strategies
 - Interrupt the search after finding the first L’ points
 - Continue the search until all points from all buckets are retrieved

- Both strategies yield different behaviors of the algorithm
LSH Query Strategy 1

Set $L' = 3L$ to yield a solution to the randomized c-approximate R-near neighbor problem

- Let $\rho = \frac{\ln 1/P_1}{\ln 1/P_2}$
- Set L to $\theta(n^\rho)$
- Algorithm runs in time proportional to n^ρ
- Sublinear in n if $P_1 > P_2$
LSH Query Strategy 2

- Solves the randomized R-near neighbor reporting problem
- Value of failure probability depends on choice of k and L
- Query time is also dependent on k and L and can be as high as $\Theta(n)$
Hamming Distance [Indyk & Motwani, 1998]

- Binary vectors: $\{0, 1\}^d$
- LSH family: $h_i(p) = p_i$, where i is a randomly chosen index
- Probability of same bucket:
 \[P(h(y_i) = h(y_j)) = 1 - \frac{||y_i - y_j||_H}{d} \]
- Exponent is $\rho = 1/c$
Jaccard Coefficient: Min-Hash

- Similarity between two sets C_1, C_2
 \[
 \text{sim}(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}
 \]

- Distance: $1 - \text{sim}(C_1, C_2)$

- LSH family: pick a random permutation
 \[
 h_\pi(C) = \min_\pi \pi(C)
 \]

- Probability of same bucket:
 \[
 P[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)
 \]
Jaccard Coefficient: Other Options

- **K-min sketch**: generalization of min-wise sketch used for min-hash with smaller variance but cannot be used for ANN using hash tables like min-hash

- **Min-max hash**: instead of keeping the smallest hash value of each random permutation, keeps both the smallest and largest values of each random permutation and has smaller variance than min-hash

- **B-bit minwise hashing**: only uses lowest b-bits of the min-hash value and has substantial advantages in terms of storage space
Angle-based Distance: Random Projection

- Consider angle between two vectors:
 \[\arccos \left(\frac{p \cdot q}{\|p\|_2 \|q\|_2} \right) \]

- LSH family: pick a random vector \(w \), which follows the standard Gaussian distribution
 \[h_w(p) = \text{sign}(w \cdot p) \]

- Probability of collision
 \[P(h(p) = h(q)) = 1 - \frac{\theta(p, q)}{\pi} \]
Angle-Based Distance: Other Families

- Super-bit LSH: divide random projections into G groups and orthogonalized B random projections for each group to yield GB random projections and $G B$-super bits.

- Kernel LSH: build LSH functions with angle defined in kernel space
 \[
 \theta(p, q) = \arccos \frac{\phi(p)^\top \phi(q)}{||\phi(p)||_2||\phi(q)||_2}
 \]

- LSH with learnt metric: first learn Mahalanobis metric from semi-supervised information before forming hash function
 \[
 \theta(p, q) = \arccos \frac{p^\top A q}{||Gp||_2||Gq||_2}, \quad G^\top G = A
 \]
Angle-Based Distance: Other Families (2)

- Concomitant LSH: uses concomitant (induced order statistics) rank order statistics to form the hash functions for cosine similarity

- Hyperplane hashing: retrieve points closest to a query hyperplane

http://vision.cs.utexas.edu/projects/activehash/
l_p Distance: Norms

- Norms usually computed over vector differences
- Common examples:
 - Manhattan ($p = 1$) on telephone vectors capture symmetric set difference between two customers
 - Euclidean ($p = 2$)
 - Small values of p ($p = 0.005$) capture Hamming norms, distinct values
ℓ_p Distance: p-stable Distributions

- Let $v \in \mathbb{R}^d$ and suppose Z, X_1, \ldots, X_d are drawn iid from a distribution D. Then D is p-stable if:

$$< v, X > = \|v\|_p Z$$

- Known that p-stable distributions exist for $p \in (0, 2]$

- Examples:
 - Cauchy distribution is 1-stable
 - The standard Gaussian distribution is 2-stable

- For $0 < p < 2$, there is a way to sample from a p-stable distribution given two uniform random variables over $[0, 1]$
ℓ_p Distance: p-stable Distributions (2)

- Consider a vector, where each X_i is drawn from a p-stable distribution

- For any pair of vectors, a, b: $aX - bX = (a - b) X$ (by linearity)

- Thus $aX - bX$ is distributed as $(\ell_p(a-b))X'$ where X' is a p-stable distribution random variable

- Using multiple independent X's we can use $aX - bX$ to estimate $\ell_p(a - b)$

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides
ℓ_p Distance: p-stable Distributions (3)

- For a vector a, the dot product $a \cdot X$ projects onto the real line.
- For any pair of vectors a, b, these projections are "close" (with respect to p) if $\ell_p(a-b)$ is "small" and "far" otherwise.
- Divide the real line into segments of width w.
- Each segment defines a hash bucket: vectors that project to the same segment belong to the same bucket.

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides
\(\ell_p \) Distance: Hashing family

- Hash function:
 \[
 h_{a,b}(v) = \left\lfloor \frac{a \cdot v + b}{w} \right\rfloor
 \]

- \(a \) is a \(d \) dimensional random vector where each entry is drawn from \(p \)-stable distribution

- \(b \) is a random real number chosen uniformly from \([0, w]\) (random shift)

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides
Distance: Collision probabilities

- pdf of the absolute value of p-stable distribution: $f_p(t)$
- Simplify notation: $c = \|x - q\|_p$
- Probability of collision:
 \[
P(c) = \int_{t=0}^{w} \frac{1}{c} f\left(\frac{t}{c}\right)(1 - \frac{t}{w}) dt
 \]
- Probability only depends on the distance c and is monotonically decreasing

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides
ℓ_p Distance: Comparison

- Previous hashing scheme for $p = 1, 2$
 - Reduction to hamming distance
 - Achieved $\rho = 1/c$
- New scheme achieves smaller exponent for $p = 2$
 - Large constants and log factors in query time besides n^ρ
- Achieves the same for $p = 1$

http://dimacs.rutgers.edu/Workshops/StreamingII/datar-slides
\(l_p \) Distance: Other Families

- Leech lattice LSH: multi-dimensional version of the previous hash family
 - Very fast decoder (about 519 operations)
 - Fairly good performance for exponent with \(c = 2 \) as the value is less than 0.37
- Spherical LSH: designed for points that are on unit hypersphere in Euclidean space
\(\chi^2 \) Distance (Used in Computer Vision)

- Distance over two vectors \(p, q \):
 \[
 \chi^2(p, q) = \sqrt{\sum_{i=1}^{d} \frac{(p_i - q_i)^2}{p_i - q_i}}
 \]

- Hash family:
 \[
 h_{w,b}(p) = [g_r(w^\top x) + b], \quad g_r(p) = \frac{1}{2}(\sqrt{\frac{8p}{r^2}} + 1 - 1)
 \]

- Probability of collision:
 \[
 P(h_{w,b}(p) = h_{w,b}(q)) = \int_0^{(n+1)r^2} \frac{1}{c} f\left(\frac{t}{c} \right) \left(1 - \frac{t}{(n + 1)r^2} \right) dt
 \]

pdf of the absolute value of the 2-stable distribution
Learning to Hash

Task of learning a compound hash function to map an input item x to a compact code y

- Hash function
- Similarity measure in the coding space
- Optimization criterion
Learning to Hash: Common Functions

- Linear hash function
 \[y = \text{sign}(w^\top x) \]

- Nearest vector assignment computed by some algorithm, e.g., K-means
 \[y = \text{argmin}_{k \in \{1, \ldots, K\}} \| x - c_k \|_2 \]

- Family of hash functions influences efficient of computing hash codes and the flexibility of partitioning the space
Learning to Hash: Similarity Measure

- Hamming distance and its variances
 - Weighted Hamming distance
 - Distance table lookup
 - ...
- Euclidean distance
 - Asymmetric Euclidean distance
Learning to Hash: Optimization Criterion

- Similarity preserving

- Similarity alignment criterion directly compares the order of ANN search result to true result (order-preserving criterion)

- Coding consistent hashing encourages the smaller distances in the coding space but with smaller distances in the input space

- Coding balance uniformly distributes the codes amongst each bucket

- Bit balance, bit independence, search efficiency, etc.
Coding Consistent Hashing: Spectral Hashing

• Pioneering coding consistent hashing algorithms
 • Similar items are mapped to similar hash codes based on the Hamming distance
 • Small number of hash bits are required
 • Bit balance and bit correlation
Spectral Hashing

- Query Image
- Spectral Hash
 - Real-valued vectors
 - Non-linear dimensionality reduction
 - Binary code
 - Address Space
 - Images in database
 - Query address

Quite different to a (conventional) randomizing hash

Semantically similar images

http://cs.nyu.edu/~fergus/drafts/Spectral%20Hashing.ppt
Spectral Hashing: Algorithm

- Use PCA of the N dimensional reference data items to find principal components

- Compute the M 1D Laplacian eigenfunctions with the smallest eigenvalues along each PCA direction

- Pick the M eigenfunctions with the smallest eigenvalues among Md eigenfunctions

- Threshold the eigenfunction at zero, obtaining the binary codes
Coding Consistent Hashing: Other Functions

• Kernelized spectral hashing: extension of spectral hashing to allow hash functions to be defined using kernels

• Hypergraph spectral hashing: extension of spectral hashing from ordinary (pair-wise) graph to a hypergraph (multi-wise graph)

• ICA hashing: achieves coding balance (average number of data items mapped to each hash code is the same) by minimizing mutual information
Similarity Alignment Hashing: Binary Reconstructive Embedding

- Learn hash codes to minimize Euclidean distance in the input space and the Hamming distance in the hash code values

\[
\min \sum_{(i,j) \in N} \left(\frac{1}{2} \| x_i - x_j \|_F^2 - \frac{1}{m} \| y_i - y_j \|_2^2 \right)^2
\]

- Sample data items to form the hashing function using a kernel function and learn the weights
Order Preserving Hashing: Minimal Loss Hashing

- Hinge-like loss function to assign penalties for similar points when they are too far apart

\[
\min \sum_{(i,j) \in L} I[s_{ij} = 1] \max(||y_i - y_j||_1 - \rho + 1, 0) + \\
I[s_{ij} = 0] \lambda \max(\rho - ||y_i - y_j||_1 + 1, 0)
\]

- Optimize using a perceptron-like learning procedure
Learning to Hash: Other Topics

- Many other hash learning algorithms (different objectives associated with different domains)
- Moving beyond Hamming distances in the coding space (e.g., Manhattan, asymmetric distances)
- Quantization (how to partition the projection values of the reference data items along the direction into multiple parts)
- Active and online hashing (using small sets of pairs with labeled information)
- Fast search in Hamming space
Future Hashing Trends

- Scalable hash function learning: existing algorithms are too slow and even infeasible when handling large data

- Hash code computation speedup: improving the cost of encoding a data item

- Distance table computation speedup: product quantization and its variants need to precompute distance table between query and elements of dictionary

- Multiple and cross modality hashing: dealing with the variant of data types and data sources